
Section 3: Linear Regression
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Suggested Reading
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1 / 62



Last Section

I Estimating Parameters and Fitting Distributions

I Confidence and Prediction Intervals

I Means, Proportions, Differences

I A/B Testing
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This Section

I Linear Patterns in Data (Leavitt, House Price)

I Simple Linear Regression

I Predictions (Confidence and Prediction Intervals)

I Least Squares Principle

I Hypothesis Testing (Google vs SP500)

I Model Diagnostics (Cancer and Smoking Data)

I Data transformations (World’s Smartest Mammal
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Regression: Introduction

Regression analysis is the most widely used statistical tool for understanding

relationships among variables

I Regression provides a conceptuall approach for investigating relationships

between one or more factors and an outcome of interest

I The relationship is expressed in the form of an equation or a model

connecting the response or dependent variable and one or more explanatory

or predictor variable
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AIQ: Leavitt Stars Data

Henrietta Leavitt’s 1912 data on 25 pulsating stars. Pattern of period of oscillation

with brightness allowed astronomers to measure cosmic distances over

previously unimaginable scales.
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Fitting Prediction Rules to Data

In AI, the criterion for evaluating prediction rules is simple: How big are the errors

the rule makes, on average?

Leavitt used “the principle of least squares" to fit a prediction rule to her data.
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Prediction

Straight prediction questions:

I For how much will my house sell?

I Will the Chicago Cubs win the World Series?

I Will this person like that movie? (Netflix prize)

Explanation and understanding:

I What is the impact of an MBA on income?

I How does the returns on Google relate to the market?
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Models, Parameters and Estimates

We’ll use probability to talk about uncertainty ... and build models

I Define the random variable, Y , of interest

I Construct a regression model from historical data on characteristics, X This

entails estimating parameters using their sample counterparts

I We are now ready to generate predictions, make decisions, evaluate risk,

etc ...
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Predicting House Prices

Problem: Predict market price based on observed characteristics (Zillow)

Solution:

I Look at property sales data where we know the price and some observed

characteristics

I Build a decision model that predicts price as a function of the observed

characteristics.
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Zillow: Zestimate

R and Zestimate

R and AWS for analytics are helping Zillow real estate data.

Zillow and Big Data

Database behind the Zestimate is 20TB in size.

Zillow employs various decision tree, random forest, and regression algorithms

By averaging models, margin of error in pricing improved from 14% to 5%

Zillow Prize

Predicting whether you have waterfront property ...
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https://www.datanami.com/2015/08/12/inside-the-zestimate-data-science-at-zillow/
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https://www.kaggle.com/c/zillow-prize-1


Predicting House Prices

What characteristics do we use?

There are many factors or variables that affect the price of a house (location,

location, location, ...)

Some basics ones include

I size

I ZIP code

I location

I parking, ...

Let’s run a simple linear regression on size
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Predicting House Prices

The value that we seek to predict is called the dependent (or output) variable, and

we denote this by Y = price of house (e.g. thousand of dollars)

The variable that we use to construct our prediction is the explanatory (or input)

variable, and this is labeled X = size of house (e.g. thousand of square feet)
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Predicting House Prices

What’s does the data look like?
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Predicting House Prices

Simple Linear Regression (SLR) model

price = β0 + β1 sqft + ε where ε ∼ N(0, σ2)

where we add a random error term, ε.

The error term models the fact that not all prices will lie on our regression line

We find that β1 = 0.11

Implication: every 1 sqft increase ups price by $110
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Predicting House Prices

We can now predict the price of a house when we only know that size: take the

value off the regression line.

For example, given a house size of X = 2200

Predicted Price: Ŷ = 13.44 + 0.11(2200) = 262

The intercept β0 = 13.44 measures land value. In R: predict.lm( ... )
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Predicting House Prices

Now plot and run your regression ...

house = read.csv("data/SaratogaHouses.csv")
house$price =house$price/1000
plot(price~livingArea,data=house)
model=lm(price~livingArea,data=house)
coef(model)
abline(model,col="red",lwd=3)
coef(model)

The key command is lm( ... ) which stands for linear model.

R: will calculate everything for you!!
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Simple Linear Regression (SLR)

The underlying assumptions about the linear regression model are:

1. For each value X , the Y values are normally distributed

2. The means of Y all lie on the regression line

3. The standard deviations of these normal distributions are equal

4. The Y values are statistically independent.
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Simple Linear Regression (SLR)

The regression model looks like:

Y = β0 + β1X + ε where ε ∼ N(0, σ2)

β1 measures the effect on Y of increasing X by one

β0 measures the effect on Y when X = 0.

Xf will denote a new/future value we wish to predict at
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Fitted Values

The Fitted Values and Residuals have some special properties ...

Let’s look at the fitted values

��

�
�

�̂
�

Our predictions Ŷi = β0 + β1Xi are given by the line!!
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Residuals

What is the “residual”, ei , for the i th observation?

��

�
�

�̂
�

= −�� �� �̂�

We can write Yi = Ŷi + (Yi − Ŷi ) = Ŷi + ei
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Standardized Residuals

The residuals are ei = Yi − Ŷi . They estimate the errors from the line.

We re-scale the residuals by their standard errors. This lets us define

standardized residuals

ri =
ei

sei

=
Yi − Ŷi

sei

Outliers are points that are extreme relative to our model predictions.

They simply have large residuals!
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Residual Standard Error

How closely does the training dataset lie to our model?

I s is the residual standard error

I s is our estimate of σ

I s =
√

s2 where

s2 =
1

n − 2

n∑
i=1

(Yi − Ŷi )
2

Lower s values means tighter predictions!!
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Prediction

Suppose you have a regression of sales on price

sales = β0 + β1price

You have to predict for a given level of price

Then the two intervals correspond to

1. A sales forecast for the next store (or next week’s sales)

2. The average weekly sales (over many weeks)
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Prediction

Prediction is the most important application of your model Construct a new X
variable

new = data.frame(price=5)
predict.lm(model,new,interval="prediction")
predict.lm(model,new,interval="confidence")

Define a vector for prediction

new1 = data.frame(price=c(4,5,6))
predict.lm(model,new1,interval="prediction")
predict.lm(model,new1,interval="confidence")

24 / 62



Confidence and Prediction Intervals

lwr lower limit, upr upper limit

fit lwr upr
1 431.6129 397.0925 466.1333 # Prediction

fit lwr upr
1 431.6129 416.7968 446.429 # Confidence

fit lwr upr
1 474.1935 432.2873 516.0998 # Multiple Prediction
2 431.6129 397.0925 466.1333
3 389.0323 355.4325 422.6320

fit lwr upr # Multiple Confidence
1 474.1935 446.1938 502.1933
2 431.6129 416.7968 446.4290
3 389.0323 376.5104 401.5541
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Least Squares Principle

Ideally we want to minimize the size of all of the residuals:

I If they were all zero we would have a perfect line

We’ll use the least squares objective function to assess what constitutes a good

“fit” to our empirical data The line fitting process:

I Minimize the “total” sums of squares of the residuals to get the “best” fit

Least Squares chooses β0 and β1 to minimize
∑n

i=1 e2
i

n∑
i=1

e2
i = e2

1 + . . . + e2
n = (Y1 − Ŷ1)

2 + . . . + (Yn − Ŷn)
2
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Least Squares Principle

The formulas for β0 and β1 that minimize the least squares are:

β0 = ȳ − β1x̄

β1 = rxy ×
sy

sx

where

I x̄ and ȳ are the sample means

I sx and sy are the sample standard deviations

I rxy = corr(x , y) is the sample correlation
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Least Squares Principle

1. Intercept

β0 = ȳ − β1x̄ or ȳ = β0 + β1x̄

The point (x̄ , ȳ) is always on the regression line.

2. Slope

β1 = corr(x , y)× sY

sX
=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

=
cov(x , y)
Var(x)

The estimate of β1 is the correlation r times a scaling factor that ensures

the proper units
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Sampling Distribution for β1

Run linear regression several times using subsample of rows of the housing data
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Sampling Distribution for β1

The sampling distribution of β1 describes how it varies over different samples.

It allows us to calculate confidence and prediction intervals. Everything is

uncertain!!

It turns out that β1 is normally distributed: β1 ∼ N(β̂1, s2
b)

I β̂1 is unbiased: E(β1) = β̂1

I sβ1 is the standard error of β1 The t-stat is tb = β1/sβ1

I The three factors: sample size (n), error variance (s2), and x-spread, sx

s2
β1

=
s2∑n

i=1(xi − x̄)2 =
s2

(n − 1)s2
x
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Prediction: revisited

How do we assess how much error that could be in our best prediction?

Ŷf = β0 + β1Xf + ef where ef ∼ N(0, s2)

There’s error in everything, β0, β1, ef , ...

After we account for all the uncertainty,

var(yf ) = s2
(

1 +
1
n
+

(xf − x̄)2

(n − 1)s2
x

)

In R: predict.lm( ... )
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Prediction errors

A large predictive error variance (high uncertainty) comes from four factors

1. Large s (i.e. large errors, ε’s)

2. Small n (not enough data)

3. Small sx (not enough spread in the covariates)

4. Large difference between xf and x̄ (predicting extremes)

As a practical matter, low s values are more important for prediction than high

R2-values.
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Example: Google Stock Returns

Let’s use the quantmod package to read in the data

library(quantmod)
Y = getSymbols("GOOG", from = "2005-01-01")
# Retrieve closing prices
y = GOOG$GOOG.Adj.Close
head(y)
[1] 101.25392 97.15301 96.65851 94.18098 96.82834 97.43274
tail(y)
[1] 796.42 794.56 791.26 789.91 791.55 785.05
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Example: Google

Consider a CAPM regression for Google’s stock

Googlet = α + β sp500t + εt

In finance (α, β) are used instead of (β0, β1).

We’d like to know our estimates (α̂, β̂).

Then formulate lots of hypothesis tests:

H0 : is Google related to the market?

H0 : does Google out-perform the market in a consistent fashion?

H0 : is Google better than Nvidia?
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Example: Google
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Example: Google

summary(model) command provides all of our estimates ...

> summary(model)
lm(formula = ret ~ SP500)

Estimate Std. Error t value P(>|t|)
(Intercept) 0.0004086 0.0002936 1.392 0.164
SP500 0.9232752 0.0232625 39.689 <2e-16 ***
Residual standard error: 0.01546
Multiple R-squared: 0.3622

Our best estimates are: α̂ = 0.0004 , β̂ = 0.9232

How much will Google move if the market goes up 10%?

What do the t-ratios show?
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Outliers

Residuals allow us to define outliers:

95% of the time we expect the standardized residuals to satisfy −2 < ri < 2

Any observation with | ri |≥ 3 is an extreme outlier

Residuals will also help in assessing the validity of our model ...
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Influential Points

Influential points are observations that affect the magnitude of our estimates β̂1.

They are important to find as they typically have economic consequences.

We will use Cook’s D distance to assess the significance of an influential point

They are typically extreme in the characteristics, X -space

We will delete observations with Cook’s D greater than one and assess the

sensitivity of our conclusions
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Influential Points: Cook’s D

Cook’s D depends on the standardized residual, ri , and leverage, 0 < hi < 1

CookDi =
1
p

r2
i

hi

1 − hi

where p is the number of variables

plot(model)

plot(cooks.distance(model))

datanew = data[-i,] # Deletes ith row

Is β1(−i) is different from β1?
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Influential Points: Cook’s D

They are three ranges: 0 < Di < 0.5, 0.1 < Di < 1 and Di > 1

We will delete all observations with Cook’s D > 1

To see how stable our β1’s are to these data points

Quite often, I also delete the point with the largest Cook’s D just to check it

doesn’t affect my conclusions

All this is done, before I use summary(model) and interpret my model.
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Regression: Strategy

Five point basic strategy

1. Input and Plot Data: Use plot and boxplot commands

2. Build Regression Model: Use the model = lm (y ~ x) command

3. Diagnostics: plot(model) Fitted vs standardized residuals.

QQplot Residuals for Outliers and

Cook’s D for Influential

4. Interpretation: summary(model). Regression β’s

5. Prediction: predict.lm.

A model is only as good as its predictions. Do some out-of-sample

forecasting
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R Regression Commands

Given input-output vectors x and y

cor( ... ) computes correlation table

model = lm(y ~ x) for linear model (a.k.a regression)

model = glm(y ~ x) for logistic regression

model = lm(y ~ x1+ ... + xp) for linear multiple regression model

R provides diagnostics in

plot(model) 4-in-1 diagnostics plot

plot(cooks.distance(model)) influential points

rstudent(model) outliers
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Output and Prediction

R provides model output in

summary(model) provides a summary analysis of our model

R provides predictions in

newdata = data.frame( ... ) constructs a new input variable

predict.lm(model,newdata) provides a prediction at a new input
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Diagnostics: plot(model) 4-in-1 plot

Everything in plot(model) our 4-in-1 residual plot

1. Residuals vs Fitted: Straight line. Random looking pattern

2. Scale-location: Ought to be a straight line. Otherwise changing variance

3. Normal Q-Q Plot: Standardized residuals. This should be a straight line.

You’re plotting quantiles of the standardized residuals vs what you’d expect if

the assumptions are true, a standard normal

4. Residuals vs Leverage: Contours of Cook’s D. If D ≥ 1 then influential.

Remove and see what happens!!

In R: simply use plot(model)
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Example: Lung Cancer Data

Famous dataset linking lung cancer and cigarette consumption.

Y = lung cancer deaths/million in 1950

X = cigarette consumption/capita in 1930

Country Y X

1. Iceland 58 220

2. Norway 90 250

3. Sweden 115 310

4. Canada 150 510

5. Denmark 165 380

6. Australia 170 455

7. United States 190 1280

8. Holland 245 460

9. Switzerland 250 530

10. Finland 350 1115

11. Great Britain 465 1145
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Cancer and Smoking Data
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4 in 1 Residual Plots for Model 1
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4 in 1 Residual Plots for Model 2
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Model Coefficients

There are two ways to get the model coefficients in R

1. coef(model)

(Intercept) Consumption
66.8434535 0.2286585

2. lm(formula = Cancer ∼ Consumption)

Coefficients:
(Intercept) Consumption

66.8435 0.2287
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Transformations

Basic assumption is linearity

What if this doesn’t hold?

1. A simple solution is to transform the variables.

2. Re-run the regression on the transformed

3. If all is fine then the model holds on the transformed scale.

Then transform back to the original nonlinear scale.

The two most common models are

Power relationship

Exponential relationship
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The log-log Model

Power/Multiplicative Model

Multiplicative Model: Y = AXb where A = ea

Log-Log Transformation: log(Y ) = β0 + β1 log(X )

Why? Taking logs of both sides gives

log Y = log A + log Xb = β0 + β1 log X

The slope, β1, is an elasticity. % change in Y versus % change in X

Variables are related on a multiplicative, or percentage, scale.

In R: model = lm(log(y) ~log(x) )

Recall: log is the natural loge with base e = 2.718 . . . and that log(ab) = log β0 + log b and log(ab) = b log a.
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The Exponential Model

Suppose that we have an equation: Y = AebX where A = ea.

This is equivalent to log(Y ) = β0 + β1X

Taking logs of the original equation gives

log Y = log A + β1X

log Y = β0 + β1X

Therefore, we can run a regression of log Y on X !!

Caveat: not all variables can be logged!

Y > 0 needs to be positive.

Dummy variables X = 0 or 1 can’t be logged.

Counting variables are usually left alone as well.
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Example: World’s Smartest Mammal

First of all, read in and attach our data ...
mammals = read.csv("data/mammals.csv")
attach(mammals)
head(mammals)

Mammal Brain Body
1 African_elephant 6654.000 5712.0
2 African_giant_pouched_rat 1.000 6.6
3 Arctic_Fox 3.385 44.5
4 Arctic_ground_squirrel 0.920 5.7
5 Asian_elephant 2547.000 4603.0
6 Baboon 10.550 179.5
> tail(mammals)

Mammal Brain Body
57 Tenrec 0.900 2.6
58 Tree_hyrax 2.000 12.3
59 Tree_shrew 0.104 2.5
60 Vervet 4.190 58.0
61 Water_opossum 3.500 3.9
62 Yellow-bellied_marmot 4.050 17.0
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Residual Diagnostics

The residuals show that you need a transformation ....
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Residual Plots
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log-log model
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That’s better!
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4 in 1 Residuals: log-log model
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log-log Model

lm(formula = log(Brain) ~log(Body))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.18328 0.10682 20.44 <2e-16 ***
log(Body) 0.74320 0.03166 23.48 <2e-16 ***

log(Body) = 2.18 + 0.74 log(Brain) .

The coefficients are highly significant R2 = 90%
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Outliers

rstudent(model)

Mammal Brain Body Residual Fit
11 Chinchilla 64.0 0.425 3.7848652 4.699002
34 Man 1320.0 62.000 2.6697886 190.672827
50 Rhesus_monkey 179.0 6.800 2.1221002 36.889735
6 Baboon 179.5 10.550 1.6651361 51.128826
42 Owl_monkey 15.5 0.480 1.4589815 5.143815
10 Chimpanzee 440.0 52.160 1.2734358 167.690600

There is a residual value of 3.78 extreme outlier.

It corresponds to the Chinchilla.

This suggests that the Chinchilla is a master race of supreme intelligence!
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Inference

NO!!! I checked and there was a data entry error.

I The brain weight is given as 64 grams and should only be 6.4 grams.

I The next largest residual corresponds to mankind

In this example the log-log transformation used seems to achieve two important

goals, namely linearity and constant variance.
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Glossary of Symbols

Intercept, β0

Slope, β1

Error, e

Residual standard error, s

Standardised residual, ri

Leverage, hi
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Summary

I Linear Patterns in Data (Leavitt, House Price)

I Simple Linear Regression

I Predictions (Confidence and Prediction Intervals)

I Least Squares Principle

I Hypothesis Testing (Google vs SP500)

I Model Diagnostics (Cancer and Smoking Data)

I Data transformations (World’s Smartest Mammal
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