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Tree-Based Methods

Spau of ¥

» Tree models split the predictor space into a number of box
(open or close) regions

» The set of splitting rules used to segment the predictor space
can be summarized in a tree, we call it a decision-tree.

P Decision trees can be applied to both regression and
classification problems.

> We first consider regression problems, and then move on to
classification.
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Lets start with a quick demo

Does experience and performance effect the salary of a baseball

player?

library(ISLR)

Hitters[1:7,1:7] PQ/L(— Q)(F j
{

## MS HmRun Runs RB@Years Sd&g

## -Andy Allanson 293 66 1 30 29 14 1

## -Alan Ashby 315 81 7 24 38 39 14

## -Alvin Davis 479 130 18 66 72 76 3

## -Andre Dawson 496 141 20 65 78 37 11

## -Andres Galarraga 321 87 10 39 42 30 2

## -Alfredo Griffin 594 169 4 74 b1 35 11

## -Al Newman 185 37 1 23 8 21 2
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Lets plot the data

gplot(Years,Hits,data=Hitters, colour = Salary) +
scale_color_gradient (low="blue", high="red")
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Tree Model

library(tree) e

’ . \ NCER.
tree.hit = tree(log(Hitters$Salary)~Years+Hits,Hitters)
prune.hit=prune.tree(tree.hit,best=3) —
plot(prune.hit)
text (prune.hit)

Years < 4.5

Hits <|117.5
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Each Terminal Node is a Region

partition.tree(prune.hit, label = "yval')
lines(Hitters$Years, Hitters$Hits, type='p',

pch=16, cex=0.5,col="1lightblue")
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Prediction via Stratification of the Feature Space

We now discuss the process of building a regression tree. Roughly
speaking, there are two steps.

1. We divide the predictor space-that is, the set of possible values
for x1,x2,...,Xp - into J distinct and non-overlapping boxes,
Ri,Ro, ..., Ry.

2. For every observation that falls into the region R;, we make the
same prediction, which is simply the mean of the response
values for the training observations in R;.

J
f(x)=>_yllx € Ry)
j=1

yj = Average(y; | xi € R))
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Model Fitting

Thus the goal is to find regions that lead to minima of the Residual
Sum of Squares (RSS)

RSS = Z Z 2 _ minimize

Jj=lieR;

Unfortunately, it is computationally infeasible (NP-hard problem) to
consider every possible partition of the feature space into J boxes.
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CART Algoritms

We can find a good approximate solution, using top-down approach

>

>
>
>
>

All observations belong to a single region

Successively splits the predictor space

Each split creates two new brances

It is a greedy (myopic) approach

At each iteatoin we decide on: which variable j to split and
split point s.

Ri(j,s) = {x | xj < s} and Ra(j,s) = {x | x; = s},

thus, we seek to minimize (in case of regression tree)

min | > (vi—n)’+ Y, (vi—)?

s
5 ix;€Ry iX;€R>
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Tree Prooning

> At one extreme end, we can have n regions, one for each
observaiton

> At the other end, we can have one big region for the entire
input space and then every prediction

» Both models can be used but usually the best one is in the
middle.

» The number modesl is in between

» Number of regions (branches) controls the complexity of the
model. We need to find a good size on the variance-bias scale

» A smaller tree with fewer splits (that is, fewer regions
Ri, ..., R;) might lead to lower variance and better
interpretation at the cost of a little bias
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Tree Prooning

How do we build a tree with “reasonable” number of branches?

» Keep building the tree until RSS stagnates

P Too short-sighted since a seemingly worthless split early on in
the tree might be followed by a very good split. Can see large
drop in RSS later in later iterations

P> A better strategy is to grow a very large tree Tp, and then
prune it back in order to obtain a subtree

» We can choose the size of the subtree using cross-validaiton.

> However there are exponential number of subtrees!
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Tree Prooning

» Instead of condsidering all possible sub-trees, we will do cost
complexity pruning - also known as weakest link pruning - gives

» We consider a sequence of trees indexed by a nonnegative
tuning parameter a.

For each value of « there corresponds a subtree T C Ty such that
minimizes
|7l

> > i Ym)f +alT|

m=1i:x;€Rm

14/ 44



Choosing the best subtree

» The tuning parameter « controls a trade-off between the
subtree’s complexity and its fit to the training data.

P> As we increase « from zero, branches get pruned from the tree
in a nested and predictable fashion, so obtaining the whole
sequence of subtrees as a function of « is easy.

> We select an optimal value & using cross-validation.

» We then return to the full data set and obtain the subtree
corresponding to &.

15/ 44



Back to Baseball Example

plot(tree.hit); text(tree.hit, cex=0.6)

Year

Yearg<4.5

<35

Hits <[117.5

Year

<65

Hns]sa.s 7
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Let's find the best tree

cv.hitters=cv.tree(tree.hit)
plot(cv.hitters$size,cv.hitters$dev, "b'")

cv.hitters$dev

cv.hitters$size

Size of 3 seems good!
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Let's find the best tree

prune.hit=prune.tree(tree.hit,best=3)
plot(prune.hit)
text (prune.hit)

Years < 4.5

Hits <

1175
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Classification Trees

» A classification tree is very similar to a regression tree

» For prediciton, we use “majority vote”: pick the most
commonly occurring class in the region

» The task of growing a classification tree is quite similar to the
task of growing a regression tree: recursive binary splitting

» Instead of RSS use classification error rate: the fraction of the
observations in that region that do not belong to the most
common class.
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Some notatations

1
Pmk:Ni Z I(yi = k)

m xX;i€Rm

which is proportion of observations of class k in region m.
The classificaiton then done as follows

pm:mlfxpmka Em=1-pm
i.e the most frequent obsevation in region m

Then classification is done as follows
J
P(y =k)=>_pil(x € R;)
j=1

#7+ Gini Index and Cross-Entropy

» | have 400 obsevations in each class (400,400)
» | create a tree with two region: (300,100) and (100,300)
» Say | have another tree: (200,400) and (200,0)

p Iln hath ~racae miclacceifiratian rata ic N OK 20/ 44



Gini Index and Cross-Entropy

The Gini index: p
Gm = Z pmk(l - pmk)
k=1

- A variance across the K classes. - Takes on a small value if all of
the pmk's are close to zero or one

An alternative to the Gini index is cross-entropy (a.k.a deviance),
given by
K

Dm - - Z Pmk |Og Pmk
k=1

Near zero if the p,,k's are all near zero or near one.

Gini index and the cross-entropy led to similar results.
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Bostong Housing Example

library(MASS); data(Boston); attach(Boston)

crim zn indus chas

head (Boston)
##

## 1 0.0063 18
## 2 0.0273 0
## 3 0.0273 O
## 4 0.0324 0
## 5 0.0691 O
## 6 0.0299 O
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Bostong Housing

First we build a big tree

temp = tree(medv~lstat, Boston, .0001)
length(unique (temp$where)) # first big tree size

## [11 73

Then prune it down to one with 7 leaves

boston.tree=prune.tree(temp, 7
length(unique(boston.tree$where)) # pruned tree size

## [11 7
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Bostong Housing

plot(boston.tree,type="uniform") # first big tree

text (boston.tree,col="blue",label=c("yval"),cex=.8)

boston.fit = predict(boston.tree) #get training fitted values
plot(lstat,medv,cex=.5,pch=16) #plot data

oo=order(1lstat)

lines(1lstat[oo] ,boston.fit[oo],col="red',lud=3) #step function fit
cvals=c(9.725,4.65,3.325,5.495,16.085,19.9) #cutpoints from tree

for(i in 1:length(cvals)) abline(v=cvals[i],col='magenta',lty=2) #cutpoints

Istat <9.725 o
} 3
o
<
Istat § 4.65 Istat <[16.085 .
o
@
Istat <3.325 Istat <|5.495 Istat£19.9 o |
20 N .
.2
o _ .
40 40 30 30 20 10 : i
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Bostong Housing

Pick off dis,1lstat,medv

df2=Boston[,c(8,13,14)]
print (names(df2))

## [1] "dis" "lstat" "medv"

Build the big tree

temp = tree(medv~.,df2, .0001)
length(unique (temp$where)) #

## [1] 74

Then prune it down to one with 7 leaves

boston.tree=prune.tree(temp, 7
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Bostong Housing

plot(boston.tree,type="u")# plot tree and partition in .
text (boston.tree,col="blue",label=c("yval"),cex=.8)
partition.tree(boston.tree)

Istat < 9.725
Istat ¢ 4.65 Istat <[16.085
dis < 3{20745 dis < 2.4501 dis <
20
50 40 30 30 10
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Bostong Housing

Get predictions on 2d grid

pv=seq(from=.01,to=.99,by=.05)

x1lq = quantile(df2$lstat,probs=pv)

x2q = quantile(df2$dis,probs=pv)

xx = expand.grid(xlq,x2q) #matriz with two columns using all combinations of zl
dfpred = data.frame(dis=xx[,2],lstat=xx[,1])

lmedpred = predict(boston.tree,dfpred)
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Bostong Housing

Make perspective plot

par( c(1,1))
persp(xlq,x2q,matrix(lmedpred, length(x2q), T,
150, 'dis', 'lstat’, 'medv',

c(min(df2$medv) ,1.1*max(df2$medv)))

SR

S
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Trees Pluses

» Trees are very easy to explain to people. In fact, they are even
easier to explain than linear regression!

» Some people believe that decision trees more closely mirror
human decision-making than do the regression and
classification approaches seen in previous chapters.

P> Trees can be displayed graphically, and are easily interpreted
even by a non-expert (especially if they are small).

P Trees can easily handle qualitative predictors without the need
to create dummy variables.
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Trees Minuses

» Large tress are of high variance (a small change in the data can
cause a large change in the final estimated tree)

» Small trees are not good predictors

» Often hard to find a good model on the bias-variance scale
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Bagging

P> Treat the sample as if it were the population and then take iid
draws.

> That is, you sample with replacement so that you can get the
same original sample value more than once in a bootstrap
sample.

To Bootsrap Aggregate (Bag) we:

» Take B bootstrap samples from the training data, each of the
same size as the training data.

> Fit a large tree to each bootstrap sample (we know how to do
this fast!). This will give us B trees.

» Combine the results from each of the B trees to get an overall
prediction.
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Bagging

» For numeric y we can combine the results easily by making our
overall prediction the average of the predictions from each of
the B trees.

» For categorical y, it is not quite so obvious how you want to
combine the results from the different trees.

» Often people let the trees vote: given x get a prediction from
each tree and the category that gets the most votes (out of B
ballots) is the prediction.

» Alternatively, you could average the p from each tree. Most
software seems to follow the vote plan.
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Baggining

» The simple idea behind every ensemble modes is that variance
of the average is lowe than variance of individual.

» Say we have B models fi(x),. .., fg(x) then we combine those
avg Z fb(X

» Combining models helps fighting overfilling

» On the negative side, it is harder to interpret those ensembles
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Bagging

Let's experiment with the number of trees in the model

library(randomForest)
n = nrow(Boston)
ntreev = ¢(10,500,5000)
fmat = matrix(0,n,3)
for(i in 1:3) {

rffit = randomForest(medv~1lstat, Boston, ntreev[i], 15)
fmat[,i] = predict(rffit)
print (mean((fmat[,i] - medv) 2, TRUE))

}

## [1] 32

## [1] 29

## [1] 29
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Bagging
Let's plot the results

for(i in 1:3) {

medv

plot (Boston$lstat,Boston$medv, 'lstat’', 'medv', 16)
lines(Boston$lstat[oo],fmat[o00,i], i+1, 3)
title( paste('bagging ntrees = ',ntreev[i]))

bagging ntrees = 10

bagging ntrees = 500

g =

bagging ntrees = 5000
o

medv
medv

> With 10 trees our fit is too jumbly.
» With 1,000 and 5,000 trees the fit is not bad and very similar.

P> Note that although our method is based multiple trees
(average over) so we no longer have a simple step function!!
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Random Forest

» In bagging, the models become correlated and you do not
achieve 1/n reduction in variance: most or all of the trees will
use the strongest predictor in the top split

» Bagged trees will look similar!

» Random forests decorrelates the trees: each time a split in a
tree is considered, a random sample of m predictors is chosen
as split candidates from the full set of p predictors

» Typically m=,/p
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Random Forest

Ove of the "interpretation” tools that comes with ensemble models
is importance rank: total amount that the deviance (loss) is
decreased due to splits over a given predictor, averaged over all tree

rf.boston = randomForest (medv~., Boston, 4, TRUE, 50)
varImpPlot (rf.boston, 21, "lightblue", "y
m ] rm o
Istat o Istat o
nox o ptratio o
dis o indus [}
crim o] crim o
ptratio o nox o
indus o dis o
tax o age o
af]e o black o
black o tax [}
ra h rad o
chas o chas o
zn o zn o
T T T T T T T T T T T
2 4 6 8 10 0 2000 4000 6000 8000 12000
%IncMSE IncNodePurity
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Random Forest

rf.boston = randomForest(medv~.,data=Boston,mtry=6,ntree=50, maxnodes=50)
yhat.rf = predict(rf.boston,newdata=Boston)

oo=order (1stat)

plot(1lstat[oo] ,medv[oo],pch=21,bg="grey", xlab="lstat", ylab="medv") #plot data
lines(1lstat[oo],yhat.rf[oo],col='red',lud=3) #step function fit

o |
)

medv
30 40

20
Il

10
L
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Boosting

Like Random Forests, boosting is an ensemble method is that the
overall fit it produced from many trees. The idea however, is totally
different!!

In Boosting we:

P> Fit the data with a single tree.

» Crush the fit so that it does not work very well.

» Look at the part of y not captured by the crushed tree and fit
a new tree to what is “left over”

» Crush the new tree. Your new fit is the sum of the two trees.

P> Repeat the above steps iteratively. At each iteration you fit
“what is left over" with a tree, crush the tree, and then add the
new crushed tree into the fit.

» Your final fit is the sum of many trees.
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Boosting

Pick a loss function L that reflects setting; e.g., for continuous y,
could take L(y;,0;) = (y; — 0;)> Want to solve

n M
minimizegegm Z L (y,-, Z B; - TJ(X,))
i=1 j=1
- Indexes all trees of a fixed size (e.g., depth = 5), so M is huge
» Space is simply too big to optimize

» Gradient boosting: basically a version of gradient descent that
is forced to work with trees

» First think of optimization as ming f(6), over predicted values
6 (subject to # coming from trees)
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Boosting

Set fi(x) = 0 (constant predictor) and r; = y;
Forb=1,2,....B

(a) Fit a tree f, with d splits to the training set (X, r)
(b) Update the model

f(x) = f(x) + Mp(x)
(c) Update the residuals

ri = ri — )\fb(X)
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Boosting

Here are some boosting fits where we vary the number of trees, but
fix the depth at 2 (suitable with 1 x) and shrinkage = X at .2.

library(gbm)
boost.boston=gbm(medv~. , Boston, "gaussian", 5000,
yhat.boost=predict (boost.boston, Boston, 5000)

mean ((yhat.boost-Boston$medv) “2)

## [1] 4e-04
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Boosting

summary (boost.boston,

## var rel.inf
## lstat 1stat 36.32
## rm rm 30.98
## dis dis 7.63
## crim crim 5.09
## nox nox 4.63
## age age 4.50
## black black 3.45
## ptratio ptratio 3.11
## tax tax 1.74
## rad rad 1.17
## indus indus 0.87
## chas chas 0.39
## zn zn 0.13

FALSE)
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Boosting

plot(boost.boston,i="rm"
plot(boost.boston,i="1lstat")
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