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Tree-Based Methods

I Tree models split the predictor space into a number of box
(open or close) regions

I The set of splitting rules used to segment the predictor space
can be summarized in a tree, we call it a decision-tree.

I Decision trees can be applied to both regression and
classification problems.

I We first consider regression problems, and then move on to
classification.
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Lets start with a quick demo

Does experience and performance e�ect the salary of a baseball
player?
library(ISLR)

Hitters[1:7,1:7]

## AtBat Hits HmRun Runs RBI Walks Years

## -Andy Allanson 293 66 1 30 29 14 1

## -Alan Ashby 315 81 7 24 38 39 14

## -Alvin Davis 479 130 18 66 72 76 3

## -Andre Dawson 496 141 20 65 78 37 11

## -Andres Galarraga 321 87 10 39 42 30 2

## -Alfredo Griffin 594 169 4 74 51 35 11

## -Al Newman 185 37 1 23 8 21 2
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Lets plot the data
qplot(Years,Hits,data=Hitters, colour = Salary) +

scale_color_gradient(low="blue", high="red")
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Tree Model
library(tree)

tree.hit = tree(log(Hitters$Salary)~Years+Hits,Hitters)

prune.hit=prune.tree(tree.hit,best=3)

plot(prune.hit)

text(prune.hit)

|Years < 4.5

Hits < 117.5
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Each Terminal Node is a Region
partition.tree(prune.hit, label = "yval")

lines(Hitters$Years, Hitters$Hits, type=�p�, pch=16, cex=0.5,col="lightblue")
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Side-by-Side

|Years < 4.5

Hits < 117.5
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Prediction via Stratification of the Feature Space

We now discuss the process of building a regression tree. Roughly
speaking, there are two steps.

1. We divide the predictor space-that is, the set of possible values
for x1, x2, . . . , xp - into J distinct and non-overlapping boxes,
R1, R2, ..., RJ .

2. For every observation that falls into the region Rj , we make the
same prediction, which is simply the mean of the response
values for the training observations in Rj .

f (x) =
Jÿ

j=1
ȳj I(x œ Rj)

ȳj = Average(yi | xi œ Rj)
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Model Fitting

Thus the goal is to find regions that lead to minima of the Residual
Sum of Squares (RSS)

RSS =
Jÿ

j=1

ÿ

iœRj

(yi ≠ ȳj)2 æ minimize

Unfortunately, it is computationally infeasible (NP-hard problem) to
consider every possible partition of the feature space into J boxes.
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CART Algoritms

We can find a good approximate solution, using top-down approach
I All observations belong to a single region
I Successively splits the predictor space
I Each split creates two new brances
I It is a greedy (myopic) approach
I At each iteatoin we decide on: which variable j to split and

split point s.

R1(j , s) = {x | xj < s} and R2(j , s) = {x | xj Ø s},

thus, we seek to minimize (in case of regression tree)

min
j,s

S

U
ÿ

i :xi œR1

(yi ≠ ȳ1)2 +
ÿ

i :xi œR2

(yi ≠ ȳ2)2

T

V
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Tree Prooning

I At one extreme end, we can have n regions, one for each
observaiton

I At the other end, we can have one big region for the entire
input space and then every prediction

I Both models can be used but usually the best one is in the
middle.

I The number modesl is in between
I Number of regions (branches) controls the complexity of the

model. We need to find a good size on the variance-bias scale
I A smaller tree with fewer splits (that is, fewer regions

R1, ..., RJ) might lead to lower variance and better
interpretation at the cost of a little bias
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Tree Prooning

How do we build a tree with “reasonable” number of branches?
I Keep building the tree until RSS stagnates
I Too short-sighted since a seemingly worthless split early on in

the tree might be followed by a very good split. Can see large
drop in RSS later in later iterations

I A better strategy is to grow a very large tree T0, and then
prune it back in order to obtain a subtree

I We can choose the size of the subtree using cross-validaiton.
I However there are exponential number of subtrees!
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Tree Prooning

I Instead of condsidering all possible sub-trees, we will do cost
complexity pruning - also known as weakest link pruning - gives

I We consider a sequence of trees indexed by a nonnegative
tuning parameter –.

For each value of – there corresponds a subtree T µ T0 such that
minimizes

|T |ÿ

m=1

ÿ

i :xi œRm

(yi ≠ ȳm)2 + –|T |
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Choosing the best subtree

I The tuning parameter – controls a trade-o� between the
subtree’s complexity and its fit to the training data.

I As we increase – from zero, branches get pruned from the tree
in a nested and predictable fashion, so obtaining the whole
sequence of subtrees as a function of – is easy.

I We select an optimal value –̂ using cross-validation.
I We then return to the full data set and obtain the subtree

corresponding to –̂.
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Back to Baseball Example
plot(tree.hit); text(tree.hit, cex=0.6)
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Let’s find the best tree
cv.hitters=cv.tree(tree.hit)

plot(cv.hitters$size,cv.hitters$dev,type="b")
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Size of 3 seems good!
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Let’s find the best tree

prune.hit=prune.tree(tree.hit,best=3)

plot(prune.hit)

text(prune.hit)

|Years < 4.5

Hits < 117.5
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Classification Trees

I A classification tree is very similar to a regression tree
I For prediciton, we use “majority vote”: pick the most

commonly occurring class in the region
I The task of growing a classification tree is quite similar to the

task of growing a regression tree: recursive binary splitting
I Instead of RSS use classification error rate: the fraction of the

observations in that region that do not belong to the most
common class.
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Some notatations

pmk = 1
Nm

ÿ

xi œRm

I(yi = k)

which is proportion of observations of class k in region m.

The classificaiton then done as follows
pm = max

k
pmk , Em = 1 ≠ pm

i.e the most frequent obsevation in region m
Then classification is done as follows

P(y = k) =
Jÿ

j=1
pj I(x œ Rj)

## Gini Index and Cross-Entropy
I I have 400 obsevations in each class (400,400)
I I create a tree with two region: (300,100) and (100,300)
I Say I have another tree: (200,400) and (200,0)
I In both cases misclassification rate is 0.25.
I The later tree is preferable.

We prefer to have more “pure nodes”

Gini index does a better job.
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Gini Index and Cross-Entropy

The Gini index:

Gm =
Kÿ

k=1
pmk(1 ≠ pmk)

- A variance across the K classes. - Takes on a small value if all of
the pmk ’s are close to zero or one

An alternative to the Gini index is cross-entropy (a.k.a deviance),
given by

Dm = ≠
Kÿ

k=1
pmk log pmk

Near zero if the pmk’s are all near zero or near one.

Gini index and the cross-entropy led to similar results.

21 / 44



Bostong Housing Example

library(MASS); data(Boston); attach(Boston)

head(Boston)

## crim zn indus chas nox rm age dis rad tax ptratio black lstat medv

## 1 0.0063 18 2.3 0 0.54 6.6 65 4.1 1 296 15 397 5.0 24

## 2 0.0273 0 7.1 0 0.47 6.4 79 5.0 2 242 18 397 9.1 22

## 3 0.0273 0 7.1 0 0.47 7.2 61 5.0 2 242 18 393 4.0 35

## 4 0.0324 0 2.2 0 0.46 7.0 46 6.1 3 222 19 395 2.9 33

## 5 0.0691 0 2.2 0 0.46 7.1 54 6.1 3 222 19 397 5.3 36

## 6 0.0299 0 2.2 0 0.46 6.4 59 6.1 3 222 19 394 5.2 29
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Bostong Housing

First we build a big tree
temp = tree(medv~lstat,data=Boston,mindev=.0001)

length(unique(temp$where)) # first big tree size

## [1] 73

Then prune it down to one with 7 leaves
boston.tree=prune.tree(temp,best=7)

length(unique(boston.tree$where)) # pruned tree size

## [1] 7

23 / 44



Bostong Housing

plot(boston.tree,type="uniform") # first big tree
text(boston.tree,col="blue",label=c("yval"),cex=.8)

boston.fit = predict(boston.tree) #get training fitted values
plot(lstat,medv,cex=.5,pch=16) #plot data
oo=order(lstat)

lines(lstat[oo],boston.fit[oo],col=�red�,lwd=3) #step function fit
cvals=c(9.725,4.65,3.325,5.495,16.085,19.9) #cutpoints from tree
for(i in 1:length(cvals)) abline(v=cvals[i],col=�magenta�,lty=2) #cutpoints

|lstat < 9.725

lstat < 4.65
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Bostong Housing

Pick o� dis,lstat,medv
df2=Boston[,c(8,13,14)]

print(names(df2))

## [1] "dis" "lstat" "medv"

Build the big tree
temp = tree(medv~.,df2,mindev=.0001)

length(unique(temp$where)) #

## [1] 74

Then prune it down to one with 7 leaves
boston.tree=prune.tree(temp,best=7)
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Bostong Housing
plot(boston.tree,type="u")# plot tree and partition in x.
text(boston.tree,col="blue",label=c("yval"),cex=.8)

partition.tree(boston.tree)

|lstat < 9.725

lstat < 4.65

dis < 3.20745 dis < 2.4501

lstat < 16.085

dis < 2.0037
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Bostong Housing

Get predictions on 2d grid
pv=seq(from=.01,to=.99,by=.05)

x1q = quantile(df2$lstat,probs=pv)

x2q = quantile(df2$dis,probs=pv)

xx = expand.grid(x1q,x2q) #matrix with two columns using all combinations of x1q and x2q
dfpred = data.frame(dis=xx[,2],lstat=xx[,1])

lmedpred = predict(boston.tree,dfpred)
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Bostong Housing

Make perspective plot
par(mfrow=c(1,1))

persp(x1q,x2q,matrix(lmedpred,ncol=length(x2q),byrow=T),

theta=150,xlab=�dis�,ylab=�lstat�,zlab=�medv�,

zlim=c(min(df2$medv),1.1*max(df2$medv)))

dis
lstat

m
edv
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Trees Pluses

I Trees are very easy to explain to people. In fact, they are even
easier to explain than linear regression!

I Some people believe that decision trees more closely mirror
human decision-making than do the regression and
classification approaches seen in previous chapters.

I Trees can be displayed graphically, and are easily interpreted
even by a non-expert (especially if they are small).

I Trees can easily handle qualitative predictors without the need
to create dummy variables.
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Trees Minuses

I Large tress are of high variance (a small change in the data can
cause a large change in the final estimated tree)

I Small trees are not good predictors
I Often hard to find a good model on the bias-variance scale
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Bagging

I Treat the sample as if it were the population and then take iid
draws.

I That is, you sample with replacement so that you can get the
same original sample value more than once in a bootstrap
sample.

To Bootsrap Aggregate (Bag) we:
I Take B bootstrap samples from the training data, each of the

same size as the training data.
I Fit a large tree to each bootstrap sample (we know how to do

this fast!). This will give us B trees.
I Combine the results from each of the B trees to get an overall

prediction.
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Bagging

I For numeric y we can combine the results easily by making our
overall prediction the average of the predictions from each of
the B trees.

I For categorical y , it is not quite so obvious how you want to
combine the results from the di�erent trees.

I Often people let the trees vote: given x get a prediction from
each tree and the category that gets the most votes (out of B
ballots) is the prediction.

I Alternatively, you could average the p̂ from each tree. Most
software seems to follow the vote plan.
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Baggining

I The simple idea behind every ensemble modes is that variance
of the average is lowe than variance of individual.

I Say we have B models f1(x), . . . , fB(x) then we combine those

favg(x) = 1
B

Bÿ

b=1
fb(x)

I Combining models helps fighting overfilling
I On the negative side, it is harder to interpret those ensembles
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Bagging

Let’s experiment with the number of trees in the model
library(randomForest)

n = nrow(Boston)

ntreev = c(10,500,5000)

fmat = matrix(0,n,3)

for(i in 1:3) {

rffit = randomForest(medv~lstat,data=Boston,ntree=ntreev[i],maxnodes=15)

fmat[,i] = predict(rffit)

print(mean((fmat[,i] - medv)ˆ2, na.rm = TRUE))

}

## [1] 32

## [1] 29

## [1] 29

34 / 44



Bagging

Let’s plot the results
for(i in 1:3) {

plot(Boston$lstat,Boston$medv,xlab=�lstat�,ylab=�medv�,pch=16)

lines(Boston$lstat[oo],fmat[oo,i],col=i+1,lwd=3)

title(main=paste(�bagging ntrees = �,ntreev[i]))

}
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bagging ntrees =  5000

I With 10 trees our fit is too jumbly.
I With 1,000 and 5,000 trees the fit is not bad and very similar.
I Note that although our method is based multiple trees

(average over) so we no longer have a simple step function!!
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Random Forest

I In bagging, the models become correlated and you do not
achieve 1/n reduction in variance: most or all of the trees will
use the strongest predictor in the top split

I Bagged trees will look similar!
I Random forests decorrelates the trees: each time a split in a

tree is considered, a random sample of m predictors is chosen
as split candidates from the full set of p predictors

I Typically m = Ôp
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Random Forest

Ove of the “interpretation” tools that comes with ensemble models
is importance rank: total amount that the deviance (loss) is
decreased due to splits over a given predictor, averaged over all tree
rf.boston = randomForest(medv~.,data=Boston,mtry=4,importance=TRUE,ntree=50)

varImpPlot(rf.boston,pch=21,bg="lightblue",main="")
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Random Forest
rf.boston = randomForest(medv~.,data=Boston,mtry=6,ntree=50, maxnodes=50)

yhat.rf = predict(rf.boston,newdata=Boston)

oo=order(lstat)

plot(lstat[oo],medv[oo],pch=21,bg="grey", xlab="lstat", ylab="medv") #plot data
lines(lstat[oo],yhat.rf[oo],col=�red�,lwd=3) #step function fit
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Boosting

Like Random Forests, boosting is an ensemble method is that the
overall fit it produced from many trees. The idea however, is totally
di�erent!!

In Boosting we:
I Fit the data with a single tree.
I Crush the fit so that it does not work very well.
I Look at the part of y not captured by the crushed tree and fit

a new tree to what is “left over”
I Crush the new tree. Your new fit is the sum of the two trees.
I Repeat the above steps iteratively. At each iteration you fit

“what is left over" with a tree, crush the tree, and then add the
new crushed tree into the fit.

I Your final fit is the sum of many trees.
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Boosting

Pick a loss function L that reflects setting; e.g., for continuous y ,
could take L(yi , ◊i) = (yi ≠ ◊i)2 Want to solve

minimize—œRM

nÿ

i=1
L

Q

ayi ,
Mÿ

j=1
—j · Tj(xi)

R

b

- Indexes all trees of a fixed size (e.g., depth = 5), so M is huge
I Space is simply too big to optimize
I Gradient boosting: basically a version of gradient descent that

is forced to work with trees
I First think of optimization as min◊ f (◊), over predicted values

◊ (subject to ◊ coming from trees)
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Boosting

Set f1(x) = 0 (constant predictor) and ri = yi

For b = 1, 2, . . . , B
(a) Fit a tree fb with d splits to the training set (X , r)
(b) Update the model

f (x) = f (x) + ⁄fb(x)

(c) Update the residuals

ri = ri ≠ ⁄fb(x)
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Boosting

Here are some boosting fits where we vary the number of trees, but
fix the depth at 2 (suitable with 1 x) and shrinkage = ⁄ at .2.
library(gbm)

boost.boston=gbm(medv~.,data=Boston,distribution="gaussian",n.trees=5000,interaction.depth=4)

yhat.boost=predict(boost.boston,newdata=Boston,n.trees=5000)

mean((yhat.boost-Boston$medv)ˆ2)

## [1] 4e-04
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Boosting

summary(boost.boston, plotit=FALSE)

## var rel.inf

## lstat lstat 36.32

## rm rm 30.98

## dis dis 7.63

## crim crim 5.09

## nox nox 4.63

## age age 4.50

## black black 3.45

## ptratio ptratio 3.11

## tax tax 1.74

## rad rad 1.17

## indus indus 0.87

## chas chas 0.39

## zn zn 0.13
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Boosting

plot(boost.boston,i="rm")

plot(boost.boston,i="lstat")
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