
Tree Modles

Vadim Sokolov

Spring 2021

1 / 44

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

Tree-Based Methods

I Tree models split the predictor space into a number of box
(open or close) regions

I The set of splitting rules used to segment the predictor space
can be summarized in a tree, we call it a decision-tree.

I Decision trees can be applied to both regression and
classification problems.

I We first consider regression problems, and then move on to
classification.

3 / 44

iPad

Lets start with a quick demo

Does experience and performance e�ect the salary of a baseball
player?
library(ISLR)

Hitters[1:7,1:7]

AtBat Hits HmRun Runs RBI Walks Years

-Andy Allanson 293 66 1 30 29 14 1

-Alan Ashby 315 81 7 24 38 39 14

-Alvin Davis 479 130 18 66 72 76 3

-Andre Dawson 496 141 20 65 78 37 11

-Andres Galarraga 321 87 10 39 42 30 2

-Alfredo Griffin 594 169 4 74 51 35 11

-Al Newman 185 37 1 23 8 21 2

4 / 44

iPad

iPad

Lets plot the data
qplot(Years,Hits,data=Hitters, colour = Salary) +

scale_color_gradient(low="blue", high="red")

0

50

100

150

200

0 5 10 15 20 25
Years

H
its

500

1000

1500

2000

Salary

5 / 44

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

Tree Model
library(tree)

tree.hit = tree(log(Hitters$Salary)~Years+Hits,Hitters)

prune.hit=prune.tree(tree.hit,best=3)

plot(prune.hit)

text(prune.hit)

|Years < 4.5

Hits < 117.5
5

6 7
6 / 44

iPad

iPad

iPad

Each Terminal Node is a Region
partition.tree(prune.hit, label = "yval")

lines(Hitters$Years, Hitters$Hits, type=�p�, pch=16, cex=0.5,col="lightblue")

5 10 15 20

0
50

10
0

15
0

20
0

Years

H
its 5.1

6.0

6.7

7 / 44

iPad

iPad

iPad

iPad

iPad

iPad

Side-by-Side

|Years < 4.5

Hits < 117.5
5

6 7

5 10 15 20

0
50

10
0

15
0

20
0

H
its 5.1

6.0

6.7

8 / 44

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

Prediction via Stratification of the Feature Space

We now discuss the process of building a regression tree. Roughly
speaking, there are two steps.

1. We divide the predictor space-that is, the set of possible values
for x1, x2, . . . , xp - into J distinct and non-overlapping boxes,
R1, R2, ..., RJ .

2. For every observation that falls into the region Rj , we make the
same prediction, which is simply the mean of the response
values for the training observations in Rj .

f (x) =
Jÿ

j=1
ȳj I(x œ Rj)

ȳj = Average(yi | xi œ Rj)

9 / 44

Model Fitting

Thus the goal is to find regions that lead to minima of the Residual
Sum of Squares (RSS)

RSS =
Jÿ

j=1

ÿ

iœRj

(yi ≠ ȳj)2 æ minimize

Unfortunately, it is computationally infeasible (NP-hard problem) to
consider every possible partition of the feature space into J boxes.

10 / 44

CART Algoritms

We can find a good approximate solution, using top-down approach
I All observations belong to a single region
I Successively splits the predictor space
I Each split creates two new brances
I It is a greedy (myopic) approach
I At each iteatoin we decide on: which variable j to split and

split point s.

R1(j , s) = {x | xj < s} and R2(j , s) = {x | xj Ø s},

thus, we seek to minimize (in case of regression tree)

min
j,s

S

U
ÿ

i :xi œR1

(yi ≠ ȳ1)2 +
ÿ

i :xi œR2

(yi ≠ ȳ2)2

T

V

11 / 44

Tree Prooning

I At one extreme end, we can have n regions, one for each
observaiton

I At the other end, we can have one big region for the entire
input space and then every prediction

I Both models can be used but usually the best one is in the
middle.

I The number modesl is in between
I Number of regions (branches) controls the complexity of the

model. We need to find a good size on the variance-bias scale
I A smaller tree with fewer splits (that is, fewer regions

R1, ..., RJ) might lead to lower variance and better
interpretation at the cost of a little bias

12 / 44

Tree Prooning

How do we build a tree with “reasonable” number of branches?
I Keep building the tree until RSS stagnates
I Too short-sighted since a seemingly worthless split early on in

the tree might be followed by a very good split. Can see large
drop in RSS later in later iterations

I A better strategy is to grow a very large tree T0, and then
prune it back in order to obtain a subtree

I We can choose the size of the subtree using cross-validaiton.
I However there are exponential number of subtrees!

13 / 44

Tree Prooning

I Instead of condsidering all possible sub-trees, we will do cost
complexity pruning - also known as weakest link pruning - gives

I We consider a sequence of trees indexed by a nonnegative
tuning parameter –.

For each value of – there corresponds a subtree T µ T0 such that
minimizes

|T |ÿ

m=1

ÿ

i :xi œRm

(yi ≠ ȳm)2 + –|T |

14 / 44

Choosing the best subtree

I The tuning parameter – controls a trade-o� between the
subtree’s complexity and its fit to the training data.

I As we increase – from zero, branches get pruned from the tree
in a nested and predictable fashion, so obtaining the whole
sequence of subtrees as a function of – is easy.

I We select an optimal value –̂ using cross-validation.
I We then return to the full data set and obtain the subtree

corresponding to –̂.

15 / 44

Back to Baseball Example
plot(tree.hit); text(tree.hit, cex=0.6)

|Years < 4.5

Years < 3.5

Hits < 114

Hits < 40.5

Hits < 117.5

Years < 6.5

Hits < 50.5

6 5

5

6

6
6 6

7

16 / 44

Let’s find the best tree
cv.hitters=cv.tree(tree.hit)

plot(cv.hitters$size,cv.hitters$dev,type="b")

1 2 3 4 5 6 7 8

10
0

12
0

14
0

16
0

18
0

20
0

cv.hitters$size

cv
.h
itt
er
s$
de
v

Size of 3 seems good!
17 / 44

Let’s find the best tree

prune.hit=prune.tree(tree.hit,best=3)

plot(prune.hit)

text(prune.hit)

|Years < 4.5

Hits < 117.5
5

6 7

18 / 44

Classification Trees

I A classification tree is very similar to a regression tree
I For prediciton, we use “majority vote”: pick the most

commonly occurring class in the region
I The task of growing a classification tree is quite similar to the

task of growing a regression tree: recursive binary splitting
I Instead of RSS use classification error rate: the fraction of the

observations in that region that do not belong to the most
common class.

19 / 44

Some notatations

pmk = 1
Nm

ÿ

xi œRm

I(yi = k)

which is proportion of observations of class k in region m.

The classificaiton then done as follows
pm = max

k
pmk , Em = 1 ≠ pm

i.e the most frequent obsevation in region m
Then classification is done as follows

P(y = k) =
Jÿ

j=1
pj I(x œ Rj)

Gini Index and Cross-Entropy
I I have 400 obsevations in each class (400,400)
I I create a tree with two region: (300,100) and (100,300)
I Say I have another tree: (200,400) and (200,0)
I In both cases misclassification rate is 0.25.
I The later tree is preferable.

We prefer to have more “pure nodes”

Gini index does a better job.

20 / 44

Gini Index and Cross-Entropy

The Gini index:

Gm =
Kÿ

k=1
pmk(1 ≠ pmk)

- A variance across the K classes. - Takes on a small value if all of
the pmk ’s are close to zero or one

An alternative to the Gini index is cross-entropy (a.k.a deviance),
given by

Dm = ≠
Kÿ

k=1
pmk log pmk

Near zero if the pmk’s are all near zero or near one.

Gini index and the cross-entropy led to similar results.

21 / 44

Bostong Housing Example

library(MASS); data(Boston); attach(Boston)

head(Boston)

crim zn indus chas nox rm age dis rad tax ptratio black lstat medv

1 0.0063 18 2.3 0 0.54 6.6 65 4.1 1 296 15 397 5.0 24

2 0.0273 0 7.1 0 0.47 6.4 79 5.0 2 242 18 397 9.1 22

3 0.0273 0 7.1 0 0.47 7.2 61 5.0 2 242 18 393 4.0 35

4 0.0324 0 2.2 0 0.46 7.0 46 6.1 3 222 19 395 2.9 33

5 0.0691 0 2.2 0 0.46 7.1 54 6.1 3 222 19 397 5.3 36

6 0.0299 0 2.2 0 0.46 6.4 59 6.1 3 222 19 394 5.2 29

22 / 44

Bostong Housing

First we build a big tree
temp = tree(medv~lstat,data=Boston,mindev=.0001)

length(unique(temp$where)) # first big tree size

[1] 73

Then prune it down to one with 7 leaves
boston.tree=prune.tree(temp,best=7)

length(unique(boston.tree$where)) # pruned tree size

[1] 7

23 / 44

Bostong Housing

plot(boston.tree,type="uniform") # first big tree
text(boston.tree,col="blue",label=c("yval"),cex=.8)

boston.fit = predict(boston.tree) #get training fitted values
plot(lstat,medv,cex=.5,pch=16) #plot data
oo=order(lstat)

lines(lstat[oo],boston.fit[oo],col=�red�,lwd=3) #step function fit
cvals=c(9.725,4.65,3.325,5.495,16.085,19.9) #cutpoints from tree
for(i in 1:length(cvals)) abline(v=cvals[i],col=�magenta�,lty=2) #cutpoints

|lstat < 9.725

lstat < 4.65

lstat < 3.325 lstat < 5.495

lstat < 16.085

lstat < 19.9

40 40 30 30

20

20 10

10 20 30

10
20

30
40

50

m
ed

v

24 / 44

Bostong Housing

Pick o� dis,lstat,medv
df2=Boston[,c(8,13,14)]

print(names(df2))

[1] "dis" "lstat" "medv"

Build the big tree
temp = tree(medv~.,df2,mindev=.0001)

length(unique(temp$where)) #

[1] 74

Then prune it down to one with 7 leaves
boston.tree=prune.tree(temp,best=7)

25 / 44

Bostong Housing
plot(boston.tree,type="u")# plot tree and partition in x.
text(boston.tree,col="blue",label=c("yval"),cex=.8)

partition.tree(boston.tree)

|lstat < 9.725

lstat < 4.65

dis < 3.20745 dis < 2.4501

lstat < 16.085

dis < 2.0037

50 40 30 30

20

10 20

5 10 15 20 25 30 35

2
4

6
8

10
12

lstat

di
s

48

37

34

26

20

12

17

26 / 44

Bostong Housing

Get predictions on 2d grid
pv=seq(from=.01,to=.99,by=.05)

x1q = quantile(df2$lstat,probs=pv)

x2q = quantile(df2$dis,probs=pv)

xx = expand.grid(x1q,x2q) #matrix with two columns using all combinations of x1q and x2q
dfpred = data.frame(dis=xx[,2],lstat=xx[,1])

lmedpred = predict(boston.tree,dfpred)

27 / 44

Bostong Housing

Make perspective plot
par(mfrow=c(1,1))

persp(x1q,x2q,matrix(lmedpred,ncol=length(x2q),byrow=T),

theta=150,xlab=�dis�,ylab=�lstat�,zlab=�medv�,

zlim=c(min(df2$medv),1.1*max(df2$medv)))

dis
lstat

m
edv

28 / 44

Trees Pluses

I Trees are very easy to explain to people. In fact, they are even
easier to explain than linear regression!

I Some people believe that decision trees more closely mirror
human decision-making than do the regression and
classification approaches seen in previous chapters.

I Trees can be displayed graphically, and are easily interpreted
even by a non-expert (especially if they are small).

I Trees can easily handle qualitative predictors without the need
to create dummy variables.

29 / 44

Trees Minuses

I Large tress are of high variance (a small change in the data can
cause a large change in the final estimated tree)

I Small trees are not good predictors
I Often hard to find a good model on the bias-variance scale

30 / 44

Bagging

I Treat the sample as if it were the population and then take iid
draws.

I That is, you sample with replacement so that you can get the
same original sample value more than once in a bootstrap
sample.

To Bootsrap Aggregate (Bag) we:
I Take B bootstrap samples from the training data, each of the

same size as the training data.
I Fit a large tree to each bootstrap sample (we know how to do

this fast!). This will give us B trees.
I Combine the results from each of the B trees to get an overall

prediction.

31 / 44

Bagging

I For numeric y we can combine the results easily by making our
overall prediction the average of the predictions from each of
the B trees.

I For categorical y , it is not quite so obvious how you want to
combine the results from the di�erent trees.

I Often people let the trees vote: given x get a prediction from
each tree and the category that gets the most votes (out of B
ballots) is the prediction.

I Alternatively, you could average the p̂ from each tree. Most
software seems to follow the vote plan.

32 / 44

Baggining

I The simple idea behind every ensemble modes is that variance
of the average is lowe than variance of individual.

I Say we have B models f1(x), . . . , fB(x) then we combine those

favg(x) = 1
B

Bÿ

b=1
fb(x)

I Combining models helps fighting overfilling
I On the negative side, it is harder to interpret those ensembles

33 / 44

Bagging

Let’s experiment with the number of trees in the model
library(randomForest)

n = nrow(Boston)

ntreev = c(10,500,5000)

fmat = matrix(0,n,3)

for(i in 1:3) {

rffit = randomForest(medv~lstat,data=Boston,ntree=ntreev[i],maxnodes=15)

fmat[,i] = predict(rffit)

print(mean((fmat[,i] - medv)ˆ2, na.rm = TRUE))

}

[1] 32

[1] 29

[1] 29

34 / 44

Bagging

Let’s plot the results
for(i in 1:3) {

plot(Boston$lstat,Boston$medv,xlab=�lstat�,ylab=�medv�,pch=16)

lines(Boston$lstat[oo],fmat[oo,i],col=i+1,lwd=3)

title(main=paste(�bagging ntrees = �,ntreev[i]))

}

10 20 30

10
20

30
40

50

lstat

m
ed
v

bagging ntrees = 10

10 20 30

10
20

30
40

50

lstat

m
ed
v

bagging ntrees = 500

10 20 30

10
20

30
40

50

lstat

m
ed
v

bagging ntrees = 5000

I With 10 trees our fit is too jumbly.
I With 1,000 and 5,000 trees the fit is not bad and very similar.
I Note that although our method is based multiple trees

(average over) so we no longer have a simple step function!!
35 / 44

Random Forest

I In bagging, the models become correlated and you do not
achieve 1/n reduction in variance: most or all of the trees will
use the strongest predictor in the top split

I Bagged trees will look similar!
I Random forests decorrelates the trees: each time a split in a

tree is considered, a random sample of m predictors is chosen
as split candidates from the full set of p predictors

I Typically m = Ôp

36 / 44

Random Forest

Ove of the “interpretation” tools that comes with ensemble models
is importance rank: total amount that the deviance (loss) is
decreased due to splits over a given predictor, averaged over all tree
rf.boston = randomForest(medv~.,data=Boston,mtry=4,importance=TRUE,ntree=50)

varImpPlot(rf.boston,pch=21,bg="lightblue",main="")

zn
chas
rad
black
age
tax
indus
ptratio
crim
dis
nox
lstat
rm

2 4 6 8 10
%IncMSE

zn
chas
rad
tax
black
age
dis
nox
crim
indus
ptratio
lstat
rm

0 2000 4000 6000 8000 12000
IncNodePurity

37 / 44

Random Forest
rf.boston = randomForest(medv~.,data=Boston,mtry=6,ntree=50, maxnodes=50)

yhat.rf = predict(rf.boston,newdata=Boston)

oo=order(lstat)

plot(lstat[oo],medv[oo],pch=21,bg="grey", xlab="lstat", ylab="medv") #plot data
lines(lstat[oo],yhat.rf[oo],col=�red�,lwd=3) #step function fit

10 20 30

10
20

30
40

50

lstat

m
ed
v

38 / 44

Boosting

Like Random Forests, boosting is an ensemble method is that the
overall fit it produced from many trees. The idea however, is totally
di�erent!!

In Boosting we:
I Fit the data with a single tree.
I Crush the fit so that it does not work very well.
I Look at the part of y not captured by the crushed tree and fit

a new tree to what is “left over”
I Crush the new tree. Your new fit is the sum of the two trees.
I Repeat the above steps iteratively. At each iteration you fit

“what is left over" with a tree, crush the tree, and then add the
new crushed tree into the fit.

I Your final fit is the sum of many trees.

39 / 44

Boosting

Pick a loss function L that reflects setting; e.g., for continuous y ,
could take L(yi , ◊i) = (yi ≠ ◊i)2 Want to solve

minimize—œRM

nÿ

i=1
L

Q

ayi ,
Mÿ

j=1
—j · Tj(xi)

R

b

- Indexes all trees of a fixed size (e.g., depth = 5), so M is huge
I Space is simply too big to optimize
I Gradient boosting: basically a version of gradient descent that

is forced to work with trees
I First think of optimization as min◊ f (◊), over predicted values

◊ (subject to ◊ coming from trees)

40 / 44

Boosting

Set f1(x) = 0 (constant predictor) and ri = yi

For b = 1, 2, . . . , B
(a) Fit a tree fb with d splits to the training set (X , r)
(b) Update the model

f (x) = f (x) + ⁄fb(x)

(c) Update the residuals

ri = ri ≠ ⁄fb(x)

41 / 44

Boosting

Here are some boosting fits where we vary the number of trees, but
fix the depth at 2 (suitable with 1 x) and shrinkage = ⁄ at .2.
library(gbm)

boost.boston=gbm(medv~.,data=Boston,distribution="gaussian",n.trees=5000,interaction.depth=4)

yhat.boost=predict(boost.boston,newdata=Boston,n.trees=5000)

mean((yhat.boost-Boston$medv)ˆ2)

[1] 4e-04

42 / 44

Boosting

summary(boost.boston, plotit=FALSE)

var rel.inf

lstat lstat 36.32

rm rm 30.98

dis dis 7.63

crim crim 5.09

nox nox 4.63

age age 4.50

black black 3.45

ptratio ptratio 3.11

tax tax 1.74

rad rad 1.17

indus indus 0.87

chas chas 0.39

zn zn 0.13

43 / 44

Boosting

plot(boost.boston,i="rm")

plot(boost.boston,i="lstat")

rm

y

20

25

30

35

4 5 6 7 8 9

lstat

y

20

25

30

10 20 30

44 / 44

