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Abstract with a de nition that allows post-processing. Recent con-
tributions about KST are one hidden layer neural network
In this paper, we present the problem of multivariate identi cation (see gure 1), and construction methods for
function decompositions into sums and compositions ofmonovariate functions. Amongst KST-dedicated works,
monovariate functions. We recall that such a decomposi- Sprecher has proposed an algorithm for exact monovari-
tion exists in the Kolmogorov’s superposition theorem, and ate function reconstruction in [7] and [8]. Sprecher explic-
we present two of the most recent constructive algorithmsitly describes construction ethods for monovariate func-
of these monovariate functions. We rst present the algo- tions, introduces interesting notions for theorem compre-
rithm proposed by Sprecher, then the algorithm proposed hension (such as tilage), which allows direct implementa-
by Igelnik, and we present several results of decompositiontion, whereas lgelnik’s approach offers several modi cation
for gray level images. Our goal is to adapt and apply the su- perspectives about the monovariate function construction.

perposition theorem to image processing, i.e. to decompose | the second section, we introduce the superposition
an image into simpler functions using Kolmogorov superpo- theorem and several notations. Section 3 is dedicated to
sitions. We synthetise our observations, before presentingsprechervS algorithm, and gémn 4 to Igelnik’s algorithm.
several research perspectives. In section 5, we compare lgelnik’s and Sprecher’s algo-
rithms. In the last section, we draw conclusions, consider
several research perspectives, and potential applications.

1. Introduction Our contributions are the synthetic explanation of
Sprecher’s and Igelnik’s algorithms, and the application of

In 1900, Hilbert stated that high order equations can- th€ superposition theorem to gray level images, using both
not be solved by sums and compositions of bivariate func- Sprecher’s and Igelnik’s algorithm with bivariate functions.
tions. In 1957, Kolmogorov proved this hypothesis wrong
and presented his superposition theorem (KST), that let us
write every multivariate functions as sums and composi- 2, Presentation of Kolmogorov theorem
tions of monovariate functions. Nevertheless, Kolmogorov
did not propose any method for monovariate function con-
struction and only proved their existence. The goal of this
work is to express multivariate functions using simpler el-
ements, i.e. monovariate functions, that can be easily pro-
cessed using 1D or 2D signals processing methods instead
of searching for complex multidimensional extension of tra-
ditional methods. To summarize, we have to adapt Kol- Theorem 1 (Kolmogorov superposition theorem)Every
mogorov superposition theorem to determine a decompo-continuous function de ned on the identity hypercube
sition of multivariate functions into monovariate functions, ([0, 1] notedl 9)f : 19 S R can be written as sums and

The superposition theorem, reformulated and simpli ed
by Sprecher in [6] is written:



compositions of continuous monovariate functions:
— 2d
f(X1,..,Xd) = 720 O (X1 + na,..,Xg+ na)

(X1 + Na,..,xg+na)y= i (xi+an),
1)
with  continuous function,; anda constants. is called
inner function andy( ) external function.

The inner function associates every componeqtfrom
the real vecto(xu, ..., Xg) of 19 to a value in[0, 1]. The

function associates each vect(xy, ..., Xq) 1910 a

numbery, from the intervall0, 1]. These numberg, are Figure 1. lllustration of the analogy between
the arguments of functiorg,, that are summed to obtain the KST and a one hidden layer neural net-
the functionf . work, from [8].

According to the theorem, the multivariate function de-
composition can be divided into two steps: the construction
of a hash function (the inner function) that associates the
components;, i 1,d of each dimension to a unique
number; and the construction of an external functjanth
the values corresponding fofor these coordinates. Fig-
ure 3 illustrates the hash functiorde ned by Sprecher in K
2D. Both Sprecher’s and Igelnik’s algorithms de ne a su- de =
perposition of disjoint hypertde translated tilages, splitting r=1
the de nition space of functiofi. Then, monovariate func- k @)
tions are generated for each tilage layer. Figure 4 illustrates anddi = d¢ + n S
the superposition of tilage layers in 2D. r=2

and the structure of the algorithm are based on the de-
composition of real numbers in the baseevery decimal
number (notedly) in [0, 1] with k decimals can be written:

. de nes a translated.
3. Sprecher’s Algorithm Using thed, de ned in equation 2, Braun aral. de ne
the function by:
Sprecher has proposed an algorithm to determine the in-

ternal and external functionsin [7] and [8], respectively. Be- fork =1:

cause, the function, de ned by Sprecher to determinds di .
discontinuous for several input values, we use the de nition fork > 1vand k< S1:

proposed by Braun anal. in [2], that provides continu- k(dk) = ks1(dk S ) + —— (3)

T
fork> landiy= S1:
FC k(A S F)+  ksa(de + %)).

ity and monotonicity for the function. The other parts of
Sprecher’s algorithm remain unchanged.

De nition 1 (Notations) Figure 2 represents the plot of functioron the interval

« dis the dimensiond 2. [0,1]. The function is obtained through linear combina-
tion of the real numbers; and function applied to each
* m is the number of tilage layersn  2d. componenk; of the input value. Figure 3 represents the

function on the spacg0, 1]°.
Sprecher has demonstrated that the image of disjoint in-

ca= 131) is the translation between two layers of tervalsl are dis_joint intervals (I). _This separation prop-
erty generates intervals that constitute an incomplete tilage

* isthe base of the variables, m+2.

tilage. of [0,1]. This tilage is extended to @dimensional tilage
e 1 = 1 and for 2 i d | = by making the cartesian product of the intervilsin or-
=1 o are the coef cients of the lin-  der to cover the entire space, the tilage is translated several
ear combination, that is the argument of functipn times by a constard, which produces the different layers

of the nal tilage. Thus, we obtai@d + 1 layers: the origi-
Sprecher proposes a construction method for functions nal tilage constituted of the disjoint hypercubes having dis-
and function . More precisely, the de nition of function  joint images through , and2d layers translated bg along
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Figure 5. Function associates each paving
block with an interval Ty in [0, 1].

Figure 2. Plot of function for =10, from external functiorg,. The algorithm iteratively evaluates an

[2]. external functiorgy, , in three steps. At each stepthe pre-
cision, noted; , must be determined. The decomposition of
real numbersly can be reduced to onky digits (see equa-
tion 2). Functionf, de nes the approximation error, that
tends to O whemr increases. The algorithm is initialized
withfg=f andr = 1.

0.05

0.04

3.1. brst step: determination of the preci-
sion k, and tilage construction

0.03:

0.02

For two coordinates; andx; that belong to two sets,
referencing the same dimensioand located at a given dis-
tance, the distance between the two setmdx obtained
with f must be smaller than tHe ™ of the oscillation off ,
ie.

it Ixi Sx| -+,
Figure 3. Plot of the hash function ford=2 frea(Xa,...,Xq) S fraa(Xy, 0 Xy) frer .
and =10, from [1].

0.01

Oncek; has been determined, the tilagg ,,...,d¢ 4 is
calculated by:

Kr

each dimension. Figure 4 represents a tilage section of a 2D i 1,d,d =dci+n il
space2d+1 =5 different superposed tilages can be seen, ' ' =2
displaced bya.

3.2. second step: internal functions and

For n from O to m, determine (di) and
(dg, 1, 0y, 4) using equations 2 and 3.

Figure 4. Section of the tilage for a 2D space 3.3. third step: determination of the ap-
and a base = 10 (5 different layers). From proximation error

1.

n 0, m , evaluate:

For a 2D space, a hypercube is associated with a couple Oh (X% +an, .., Xq+ an)=
dk, = (dk, 1,dk, 2). The hypercub&y, (dy,) is associated m+T  df d g
with an intervalTy, (dk, ) by the function . The image of a frga de,1,...,dk, d dn, (Xg + an,...,xq + an) ,

hypercubes is an intervall by function , see gure 5.

Internal functions and have been determined. Ex- where is de ned in equation 4. Then, evaluate:

ternal functiongg, cannot be directly evaluated. Sprecher fr(Xg, .., Xq) = f (X1, ..., Xq)
buildsr functionsg,, such that their sum converges to the S o jr:1 g, (xy+an,..xq+ an).



At the end of the'!" step, the result of the approximation of
f is given by the sum of then + 1 layers ofr previously
determined functiong}, :

m r
f g, (xy+ an,..,xqg+ an).
n=0 j=1

De nition 2 The function is de ned as:

dk*l 1 -~
dp (Yn) = T yn S (dg) +1
- dk+1 1 - - - (4)
S T yn S (R)S( S2b
where is a continuous function such that: Figure 6. (a) and (b) The brst layer ( n = 0)
after one and two iterations ( r = 1,r = 2) re-
(x)  O,pourx 0 ' spectively. (c) Sum of (a) and (b), partial re-
(x)  Lpourx 1 construction given by the brst layer. (d) and
. (e) The last layer ( n = 5) after one and two it-
and : .
' 1 " erations (r = 1,r = 2) respectively. (f) Sum
b = I p- of (d) and (e), partial reconstruction given by
r=k+1 ¢ ' p=1 the last layer.

A unique internal function is generated for every func-
tion f . Only the external functions are adapted to each ap-
proximation. At each iteration, a tilage is constructed. The
oscillation of the error functiof, tends ta0, consequently,
the more iterations, the better is the approximation of func-
tionf by functionsg.

3.4. Results
. i Figure 7. (a) Original image. (b) and (c) Re-

We presgnt the results of the decomposlthn appllec! 10 construction after one and two iterations, re-

gray levels images, that can be seen as bivariate functions spectively.

f(x,y) = 1(x,y). Figure 6 represents two layers of the

approximation obtained after one and two iterations. The

sum of each layer gives the approximation of the original . .

image. White points on the images 6(b) and 6(e) correspond4' Igelnik's Algorithm

to negative values of external functions. Figure 7 shows two o

reconstructions of the same originalimage afteroneandtwo The xed number of layersn and the lack of exibility

iterations of Sprecher’s algorithm. of inner functions are two major issues of Sprecher’s ap-
The |ayers obtained with the decomposition are very proaCh. |96|n|k and Parikh kept the idea of 'a. tilage, but the

similar, which is coherent since each layer corresponds tonumber of layers becomes variable. Equation 1 is replaced

a fraction of a sample of the functidn slightly translated ~ bY:

by the valuea. For 2D functions, we observe that the re-

construction quickly converges to the original image: few N d
differences can be seen between the rst and the second ap- f (X1, ..., Xd) angn i ni (Xi) (5)
proximations on gures 7(b) and 7(c). n=1 i=1

This approach present majofffegrences with Sprecher’s al-
gorithm:

¢ i has two indexes andn: inner functions ,;, in-
dependentfrom functioh, are randomly generated for
each dimensionand each layen.



« the functions andg are sampled wititM points, that
are interpolated by cubic splines.

 the sum of external functiorg, is weighted by coef -
cientsa,.

A tilage is created, made of hypercub@s obtained by
cartesian product of the intervdlg(j ), de ned as follows:

De nition 3

n LN,j S11,()=

[(nS1) +(N+1)j, (nS1) +(N+1)j +N ],

where is the distance between two intervalof length
N , such that the functioh oscillation is smaller tharﬁ

on each hypercub@. Values ofj are de ned such that the

previously generated intervalg(j) intersect the interval
[0, 1].

Figure 8 illustrates the construction of intervals The

tilage is de ned once for all at the beginning of the algo-

rithm. For a given layen, d inner functions ,; are gen-
erated (one per dimension). The argument of funcggn
is a convex combination of constantsand functions ; .

The real numbers;, randomly chosen, must be linearly

independent, strictly positive and id:l i 1. Finally,

external functiong), are constructed, which achieves layer

creation.

Figure 8. From [5], intervals
N =4,

11(0) and 11(1) for

4.1. Inner functions construction

Each function ,; is de ned as follows:

» Generate a set gf distinct numberg,; , between
andlS ,0<
interpolating cubic spline of values on the interval

is lower than . | is given by de nition 3. The
real numberyy; are sortedi.e.. ynj <Ynij +1. The
image of the intervall, (j) by function isyp; .

* Between two intervalk, (j) andl,(j +1), we de ne
a nine degree splineon an interval of length, noted
[0, ]. Splines is de ned by: s(0) = ynj ,s( ) =
Ynij +1, ands (t) = s@(t) = s®(t) = s¥W(t) =0
fort =0 andt =

< 1, such that the oscillations of the

Figure 9 gives a construction example of functioffior

two consecutive intervalk, (j) andl,(j + 1). Function
n(x) = ,d 1 i ni(x) can be evaluated. On hypercubes
Chnij ,...j 4» function has constant valuegy;, .
iz1 iYni ;. Every random numbefy ; is selected pro-

viding that the generated valupg; ; are all different, i
,d, n 1N, j N,j SL

To adjust the inner function, Igelnik use a stochastic ap-
proach using neural networks. Inner functions are sampled
by M points, that are interpolated by a cubic spline. We
can consider two sets of points: points located on plateaus
over intervald , (j ), and points located between two inter-
valsl,(j) andl,(j +1), placed on a nine degree spline.
These points are randomly placed and optimized during the
neural network construction.

4.2. External function constructions

Functiong, is de ned as follows:

* For every real number = pnj,, ., functiongs(t)
is equal to theN " of values of the functiori in the
center of the hypercub@; ,,.j ., notedbn;, ..

€2 G0 (Pnj 1 o) = 7B 1o o

« The de nition interval of functiong, is extended
to all t [0,1]. ConsiderA(ta,gn(ta)) and
D(tp,0n(tp)) two adjacent points, whettg andtp
are two levelspnj,,  j,. Two pointsB et C are
placed inA andD neighborhood, respectively. Points
B and C are connected with a line de ned with a
sloper = %‘M PointsA(ta, gn(ta)) and
B(tg,gn(tg)) are connected with a nine degree spline
S, such that: s(ta) = on(ta), s(ts) = on(ts),
s(tg) = r,s@(tg) = s®(tg) = s¥W(tg) = 0.
PointsC andD are connected with a similar nine de-
gree spline. The connection condition at poiAtsind
D of both nine degree splines gives the remaining con-
ditions. Figure 10 illustrates this construction.

Remark 1 PointsA andD (functionf values in the cen-
ters of the hypercubes) are not regularly spaced on the in-
terval [0, 1], since their abscissas are given by functign
and depend on random valugg [0, 1]. The placement

of pointsB andC in the circles centered iA andD must
preserve the order of point#\, B, C,D , i.e. the radius of
these circles must be smaller than half of the length between
the two pointA andD.

To determine the weights, and to choose the points in
function |, Igelnik creates a neural network using a stochas-
tic method (ensemble approach).layers are successively
built. To add a new layei candidate layers are gener-
ated. Every candidate layer is added to the existing neural



y=v,(x) set (X121, Xd 1)y -y (X2,p ooy Xgp) Of Dy

Yo Qn=[%,q,. ], with k [O0,...,n],
fr(X1,1,..-Xd,1)

. O =
fr(X1p,...Xdp)

Remark 2 N + 1 layers are generated for the neural net-
work, whereas onlil layers appear in equation 5: the rst

6(J) L(i+1) . S T
g ’ layer (corresponding to column vectaqy) is a initialization
_ ) constant layer.
Figure 9. From [5], plot of . On the inter-
vals In(j) and In(j +1), has constant val- To determine coef cients,, the gap betweeh and its
ues, respectively ynj and ynj +1. A nine de- approximatiorf must be minimized:

gree spline connects two plateaus.

B f(X1,12y .00 Xd,1)
Qra, St , notingt = (6)

f(X1pyenXap)

y=2.(1) D
c /J The solution is given b@ﬁ t. An evaluation of the solu-
tion is proposed by Igelnik in [4]. The result is a column
B vector (ag, ...,a,)T: we obtain a coef cienta, for each
" layerl, | 0,n . To choose the best layer amongst the
K candidates, the generalization §¢ is used. Matrix
’ Q, is generated as matrQ,, using the generalization set
: instead of the training set. Equation 6 is solved, replacing
matrixQn with Q,, and using coef cients, obtained with

Figure 10. From [5], plot of g,. Points A and matrix Q, inversion. The neural network associated mean
D are obtained with function and function squared error is determined to choose the network to select.
f. The algorithm is iterated unthl layers are constructed.

The validation error of the nal neural network is deter-
mined using validation séy, .

network to obtairK candidate neural networks. We keep

. 4.4, Results
the layer from the network with the smallest mean squared
error. The set oK candidate layers have the same plateaus
Ynij . The differences between two candidate layers are the
set of sampling points located between two intervalg )
andl,(j +1), that are randomly chosen, and the placement
of pointsB andC.

We have applied Igelnik’s algorithm to gray level im-
ages. Figure 11 represents two layers: iSt€ 1) and last
(N =10) layer. The ten layers are summed to obtain the -
nal approximation. Figure 12 represents the approximation
obtained with Igelnik’s algorithm wittN = 10 layers. Two
cases are considered: the sum using optimized weaghts
4.3. Neural network stochastic construction and the sum of every layer (without weight). The validation
error is 684.273 with optimized weights and 192.692 for
a, =1,n 1,N . These rst results show that every

The N layers are weighted by real numbess and layer should have the same weight.

summed to obtain the nal approximation of the function
f . Three sets of points are constituted: a training>et a ) ) )
generalization séb ¢ and a validation seDy . Foragiven 9. Discussion and comparison

layer n, using the training set, a set of points constituted

by the approximation of the neural network (composed of  Sprecher an@l. have demonstrated in [9] that we ob-

n S 1layers already selected) and the current layer (one oftain a space- lling curve by inverting function Figure 13

the candidate) is generated. The result is written in a matrix, represents the scanning curve obtained with the function
Qn, constituted of column vectotg, k  0,n that corre- inversion, that connects real couples. For a 2D space, each
sponds to the approximatidh) of thek™ layer for points couple(dk, 1,dx, 2) (kv =2 in gure 13) is associated to a



Figure 11. Two decomposition layers: (a)
First layer. (b) Last layer.

real value if0, 1], that are sorted and then connected by the
space lling curve.

We can generate space lling curves for Igelnik internal
functions as well. We obtain a different curve for each layer
(a new function is de ned for each layer). Moreover, each
function has constant values over tilage blocks, which in-
troduces indetermination in space lling curves: different
neighbor couplefdy, 1, dk, 2) have the same image by func-
tion . Figure 14 and gure 15 are two different views of a
space lling curve de ned by a function of Igelnik’s algo-
rithm. Neighbor points connections can be seen: horizontal
squares correspond to a functiomplateau image by func-
tion .

Sprecher’s algorithm genates an exact decomposition.
The function constructions are explicitly de ned, which
simpli es implementation. Unfortunately, external mono-
variate function constructions are related to internal func-
tion de nitions andvice versa which implies that mono-
variate function modi cations require large algorithm redef-
initions. Igelnik’s algorithm, on the other hand, generates
larger approximation error, but internal and external func-
tion de nitions are independent.

Figure 12. (a) Original image. (b) IgelnikOs ap-
proximation for N = 10 and identical weight
for every layer. (c) Absolute difference be-
tween IgelnikOs approximation (b) and orig-
inal image. (d) IgelnikOs approximation for
N = 10 and optimized weights a,. (e) Abso-
lute difference between IgelnikOs approxima-
tion (d) and original image

6. Conclusion and perspectives remain open: How can space- lling curves be controlled?

Can we generate different curves for some speci c areas of
We have dealt with multivariate function decomposition the image? The main drawback of Sprecher’s algorithm is
using Kolmogorov superposition theorem. We have pre- its lack of exibility: inner functions cannot be modi-
sented Sprecher’s algorithm traeates internal and exter-  ed; space- lling curve,i.e.images scanning, is always the
nal functions, following theorem statement: for every func- same function. Igelnik’s algorithm constructs several inner
tionf to decompose, an inner function is used, and severalfunctions (one per layer), that are not strictly increasing: we
external functions are created. Then, we have applied the alobtain several space- lling curves, at the cost of indetermi-
gorithm to bivariate functions, illustrated on gray level im- nations for particular areas (on tilage blocks). Due to Igel-
ages. The results show that the algorithm rapidly convergesnik’s algorithm construction, we can adapt inner function
to the original image. Finally, we have presented Igelnik’s de nition. Few scanning functions could be tested (scan-
algorithm and its application to gray level images. ning of areas with the same gray levels for example), and
This preliminary work shows several interesting proper- resulting external functions and approximations observed.
ties of the decomposition. An image can be converted into aSeveral questions remain open: which part (internal or ex-
1D signal: with bijectivity of function , every pixel of the  ternal) does contain most of information? Can we describe
image is associated with a value[y 1]. Several questions images with only inner or external functions? Optimal func-



Figure 13. SprecherOs space blling curve.

Figure 14. IgelnikOs space Plling curve, top
view.

Figure 15. IgelnikOs space blling curve, 3D
view.

tion constructions induce data compression. An other possi-
ble application is watermarking. A mark could be included

using several methods: information contained into a layer
could be modied to de ne a mark, or de ne a specic
space- lling curve.
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