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Abstract

In this paper, we present the problem of multivariate
function decompositions into sums and compositions of
monovariate functions. We recall that such a decomposi-
tion exists in the Kolmogorov’s superposition theorem, and
we present two of the most recent constructive algorithms
of these monovariate functions. We �rst present the algo-
rithm proposed by Sprecher, then the algorithm proposed
by Igelnik, and we present several results of decomposition
for gray level images. Our goal is to adapt and apply the su-
perposition theorem to image processing, i.e. to decompose
an image into simpler functions using Kolmogorov superpo-
sitions. We synthetise our observations, before presenting
several research perspectives.

1. Introduction

In 1900, Hilbert stated that high order equations can-
not be solved by sums and compositions of bivariate func-
tions. In 1957, Kolmogorov proved this hypothesis wrong
and presented his superposition theorem (KST), that let us
write every multivariate functions as sums and composi-
tions of monovariate functions. Nevertheless, Kolmogorov
did not propose any method for monovariate function con-
struction and only proved their existence. The goal of this
work is to express multivariate functions using simpler el-
ements, i.e. monovariate functions, that can be easily pro-
cessed using 1D or 2D signals processing methods instead
of searching for complex multidimensional extension of tra-
ditional methods. To summarize, we have to adapt Kol-
mogorov superposition theorem to determine a decompo-
sition of multivariate functions into monovariate functions,

with a de�nition that allows post-processing. Recent con-
tributions about KST are one hidden layer neural network
identi�cation (see �gure 1), and construction methods for
monovariate functions. Amongst KST-dedicated works,
Sprecher has proposed an algorithm for exact monovari-
ate function reconstruction in [7] and [8]. Sprecher explic-
itly describes construction methods for monovariate func-
tions, introduces interesting notions for theorem compre-
hension (such as tilage), which allows direct implementa-
tion, whereas Igelnik’s approach offers several modi�cation
perspectives about the monovariate function construction.

In the second section, we introduce the superposition
theorem and several notations. Section 3 is dedicated to
Sprecher’s algorithm, and section 4 to Igelnik’s algorithm.
In section 5, we compare Igelnik’s and Sprecher’s algo-
rithms. In the last section, we draw conclusions, consider
several research perspectives, and potential applications.

Our contributions are the synthetic explanation of
Sprecher’s and Igelnik’s algorithms, and the application of
the superposition theorem to gray level images, using both
Sprecher’s and Igelnik’s algorithm with bivariate functions.

2. Presentation of Kolmogorov theorem

The superposition theorem, reformulated and simpli�ed
by Sprecher in [6] is written:

Theorem 1 (Kolmogorov superposition theorem)Every
continuous function de�ned on the identity hypercube
([0, 1]d notedI d) f : I d Š� R can be written as sums and



compositions of continuous monovariate functions:

�
�

�

f (x1, ..., xd) =
� 2d

n =0 gn
�
� (x1 + na, ..., xd + na)

�

� (x1 + na, ..., xd + na) =
� d

i =1 � i � (xi + an),
(1)

with � continuous function,� i anda constants.� is called
inner function andg(� ) external function.

The inner function� associates every componentxi from
the real vector(x1, ..., xd) of I d to a value in[0, 1]. The
function � associates each vector(x1, ..., xd) � I d to a
numberyn from the interval[0, 1]. These numbersyn are
the arguments of functionsgn , that are summed to obtain
the functionf .

According to the theorem, the multivariate function de-
composition can be divided into two steps: the construction
of a hash function (the inner function) that associates the
componentsxi , i � � 1, d� of each dimension to a unique
number; and the construction of an external functiong with
the values corresponding tof for these coordinates. Fig-
ure 3 illustrates the hash function� de�ned by Sprecher in
2D. Both Sprecher’s and Igelnik’s algorithms de�ne a su-
perposition of disjoint hypercube translated tilages, splitting
the de�nition space of functionf . Then, monovariate func-
tions are generated for each tilage layer. Figure 4 illustrates
the superposition of tilage layers in 2D.

3. Sprecher’s Algorithm

Sprecher has proposed an algorithm to determine the in-
ternal and external functions in [7] and [8], respectively. Be-
cause, the function� , de�ned by Sprecher to determine� is
discontinuous for several input values, we use the de�nition
proposed by Braun andal. in [2], that provides continu-
ity and monotonicity for the function� . The other parts of
Sprecher’s algorithm remain unchanged.

De�nition 1 (Notations).

• d is the dimension,d � 2.

• m is the number of tilage layers,m � 2d.

• � is the base of the variablesxi , � � m + 2 .

• a = 1
� ( � Š 1) is the translation between two layers of

tilage.

• � 1 = 1 and for 2 � i � d, � i =� �
r =1

1
� ( i � 1)( d r � 1) / ( d � 1) are the coef�cients of the lin-

ear combination, that is the argument of functiong.

Sprecher proposes a construction method for functions�
and function� . More precisely, the de�nition of function

Figure 1. Illustration of the analogy between
the KST and a one hidden layer neural net-
work, from [8].

� and the structure of the algorithm are based on the de-
composition of real numbers in the base� : every decimal
number (noteddk ) in [0, 1] with k decimals can be written:

dk =
k�

r =1

i r � Š r ,

and dn
k = dk + n

k�

r =2

� Š r

(2)

de�nes a translateddk .
Using thedk de�ned in equation 2, Braun andal. de�ne

the function� by:

� k (dk ) =

�
							�

							�

for k = 1 :
dk

for k > 1 and ik < � Š 1 :
� kŠ 1(dk Š i k

� k ) + i k

�
d k � 1
d � 1

for k > 1 and ik = � Š 1 :
1
2 (� k (dk Š 1

� k ) + � kŠ 1(dk + 1
� k )) .

(3)

Figure 2 represents the plot of function� on the interval
[0, 1]. The function� is obtained through linear combina-
tion of the real numbers� i and function� applied to each
componentxi of the input value. Figure 3 represents the
function� on the space[0, 1]2.

Sprecher has demonstrated that the image of disjoint in-
tervalsI are disjoint intervals� (I ). This separation prop-
erty generates intervals that constitute an incomplete tilage
of [0, 1]. This tilage is extended to ad-dimensional tilage
by making the cartesian product of the intervalsI . In or-
der to cover the entire space, the tilage is translated several
times by a constanta, which produces the different layers
of the �nal tilage. Thus, we obtain2d + 1 layers: the origi-
nal tilage constituted of the disjoint hypercubes having dis-
joint images through� , and2d layers translated bya along



Figure 2. Plot of function � for � = 10, from
[2].

Figure 3. Plot of the hash function � for d = 2
and � = 10, from [1].

each dimension. Figure 4 represents a tilage section of a 2D
space:2d + 1 = 5 different superposed tilages can be seen,
displaced bya.

Figure 4. Section of the tilage for a 2D space
and a base � = 10 (5 different layers). From
[1].

For a 2D space, a hypercube is associated with a couple
dk r = ( dkr 1, dkr 2). The hypercubeSkr (dk r ) is associated
with an intervalTkr (dk r ) by the function� . The image of a
hypercubeS is an intervalT by function� , see �gure 5.

Internal functions� and � have been determined. Ex-
ternal functionsgn cannot be directly evaluated. Sprecher
buildsr functionsgr

n , such that their sum converges to the

Figure 5. Function � associates each paving
block with an interval Tk in [0, 1].

external functiongn . The algorithm iteratively evaluates an
external functiongr

n , in three steps. At each stepr , the pre-
cision, notedkr , must be determined. The decomposition of
real numbersdk can be reduced to onlykr digits (see equa-
tion 2). Functionf r de�nes the approximation error, that
tends to 0 whenr increases. The algorithm is initialized
with f 0 = f andr = 1 .

3.1. Þrst step: determination of the preci-
sion kr and tilage construction

For two coordinatesxi andx�
i that belong to two sets,

referencing the same dimensioni and located at a given dis-
tance, the distance between the two setsx andx� obtained
with f must be smaller than theN th of the oscillation off ,
i.e.:

if |xi Š x�
i | � 1

� k r ,


f r Š 1(x1, ..., xd) Š f r Š 1(x�

1, ..., x�
d)




 � � � f r Š 1� .

Oncekr has been determined, the tilagedn
kr 1, ..., dn

kr d is
calculated by:

� i � � 1, d� , dn
kr i = dkr i + n

kr�

r =2

1
� r .

3.2. second step: internal functions � and �

For n from 0 to m, determine � (dn
kr

) and
� (dn

kr 1, ..., dn
kr d) using equations 2 and 3.

3.3. third step: determination of the ap-
proximation error

� n � � 0, m� , evaluate:

gr
n � � (x1 + an, ..., xd + an) =

1
m +1

�
dn

k r 1 ,...,d n
k r d

f r Š 1
�
dkr 1, ..., dkr d

�
� dn

k r

�
� (x1 + an, ..., xd + an)

�
,

where� is de�ned in equation 4. Then, evaluate:

f r (x1, ..., xd) = f (x1, ..., xd)
Š

� m
n =0

� r
j =1 gj

n � � (x1 + an, ..., xd + an).



At the end of ther th step, the result of the approximation of
f is given by the sum of them + 1 layers ofr previously
determined functionsgr

n :

f �
m�

n =0

r�

j =1

gj
n � � (x1 + an, ..., xd + an).

De�nition 2 The function� is de�ned as:

� dn
k
(yn ) = �

�
�

d k +1 � 1
d � 1

�
yn Š � (dn

k )
�

+ 1
�

Š �
�

�
d k +1 � 1

d � 1
�
yn Š � (dn

k ) Š (� Š 2)bk
�
�

,
(4)

where� is a continuous function such that:



� (x) � 0, pour x � 0
� (x) � 1, pour x � 1

,

and:

bk =
��

r = k+1

1

�
d r � 1
d � 1

n�

p=1

� p.

A unique internal function is generated for every func-
tion f . Only the external functions are adapted to each ap-
proximation. At each iteration, a tilage is constructed. The
oscillation of the error functionf r tends to0, consequently,
the more iterations, the better is the approximation of func-
tion f by functionsg.

3.4. Results

We present the results of the decomposition applied to
gray levels images, that can be seen as bivariate functions
f (x, y) = I (x, y). Figure 6 represents two layers of the
approximation obtained after one and two iterations. The
sum of each layer gives the approximation of the original
image. White points on the images 6(b) and 6(e) correspond
to negative values of external functions. Figure 7 shows two
reconstructions of the same original image after one and two
iterations of Sprecher’s algorithm.

The layers obtained with the decomposition are very
similar, which is coherent since each layer corresponds to
a fraction of a sample of the functionf , slightly translated
by the valuea. For 2D functions, we observe that the re-
construction quickly converges to the original image: few
differences can be seen between the �rst and the second ap-
proximations on �gures 7(b) and 7(c).

Figure 6. (a) and (b) The Þrst layer ( n = 0 )
after one and two iterations ( r = 1 , r = 2 ) re-
spectively. (c) Sum of (a) and (b), partial re-
construction given by the Þrst layer. (d) and
(e) The last layer ( n = 5 ) after one and two it-
erations ( r = 1 , r = 2 ) respectively. (f) Sum
of (d) and (e), partial reconstruction given by
the last layer.

Figure 7. (a) Original image. (b) and (c) Re-
construction after one and two iterations, re-
spectively.

4. Igelnik’s Algorithm

The �xed number of layersm and the lack of �exibility
of inner functions are two major issues of Sprecher’s ap-
proach. Igelnik and Parikh kept the idea of a tilage, but the
number of layers becomes variable. Equation 1 is replaced
by:

f (x1, ..., xd) 	
N�

n =1

an gn

� d�

i =1

� i � ni (xi )
�

(5)

This approach present major differences with Sprecher’s al-
gorithm:

• � ni has two indexesi andn: inner functions� ni , in-
dependent from functionf , are randomly generated for
each dimensioni and each layern.



• the functions� andg are sampled withM points, that
are interpolated by cubic splines.

• the sum of external functionsgn is weighted by coef�-
cientsan .

A tilage is created, made of hypercubesCn obtained by
cartesian product of the intervalsI n (j ), de�ned as follows:

De�nition 3

� n � � 1, N � , j � Š1, I n (j ) =

[(n Š 1)	 + ( N + 1) j	, (n Š 1)	 + ( N + 1) j	 + N	 ],

where	 is the distance between two intervalsI of length
N	 , such that the functionf oscillation is smaller than1

N
on each hypercubeC. Values ofj are de�ned such that the
previously generated intervalsI n (j ) intersect the interval
[0, 1].

Figure 8 illustrates the construction of intervalsI . The
tilage is de�ned once for all at the beginning of the algo-
rithm. For a given layern, d inner functions� ni are gen-
erated (one per dimension). The argument of functiongn

is a convex combination of constants� i and functions� ni .
The real numbers� i , randomly chosen, must be linearly
independent, strictly positive and

� d
i =1 � i � 1. Finally,

external functionsgn are constructed, which achieves layer
creation.

Figure 8. From [5], intervals I 1(0) and I 1(1) for
N = 4 .

4.1. Inner functions construction

Each function� ni is de�ned as follows:

• Generate a set ofj distinct numbersynij , between�
and1Š � , 0 < � < 1, such that the oscillations of the
interpolating cubic spline of� values on the interval
	 is lower than� . j is given by de�nition 3. The
real numbersynij are sorted,i.e.: ynij < y nij +1 . The
image of the intervalI n (j ) by function� is ynij .

• Between two intervalsI n (j ) andI n (j + 1) , we de�ne
a nine degree splines on an interval of length	 , noted
[0, 	 ]. Splines is de�ned by: s(0) = ynij , s(	 ) =
ynij +1 , ands� (t) = s(2) (t) = s(3) (t) = s(4) (t) = 0
for t = 0 andt = 	 .

Figure 9 gives a construction example of function� for
two consecutive intervalsI n (j ) and I n (j + 1) . Function
� n (x) =

� d
i =1 � i � ni (x) can be evaluated. On hypercubes

Cnij 1 ,...,j d , function � has constant valuespnj 1 ,...,j d =
� d

i =1 � i ynij i . Every random numberynij i is selected pro-
viding that the generated valuespnij i are all different,� i �
� 1, d� , � n � � 1, N � , � j � N, j � Š1.

To adjust the inner function, Igelnik use a stochastic ap-
proach using neural networks. Inner functions are sampled
by M points, that are interpolated by a cubic spline. We
can consider two sets of points: points located on plateaus
over intervalsI n (j ), and points located between two inter-
vals I n (j ) andI n (j + 1) , placed on a nine degree spline.
These points are randomly placed and optimized during the
neural network construction.

4.2. External function constructions

Functiongn is de�ned as follows:

• For every real numbert = pn,j 1 ,...,j d , functiongn (t)
is equal to theN th of values of the functionf in the
center of the hypercubeCnij 1 ,...,j d , notedbn,j 1 ,...,j d ,
i.e.: gn (pn,j 1 ,...,j d ) = 1

N bn,j 1 ,...,j d .

• The de�nition interval of functiongn is extended
to all t � [0, 1]. Consider A(tA , gn (tA )) and
D(tD , gn (tD )) two adjacent points, wheretA andtD

are two levelspn,j 1 ,...,j d . Two points B et C are
placed inA andD neighborhood, respectively. Points
B and C are connected with a line de�ned with a
sloper = gn ( t C )Š gn ( t B )

t C Š t B
. PointsA(tA , gn (tA )) and

B (tB , gn (tB )) are connected with a nine degree spline
s, such that: s(tA ) = gn (tA ), s(tB ) = gn (tB ),
s� (tB ) = r , s(2) (tB ) = s(3) (tB ) = s(4) (tB ) = 0 .
PointsC andD are connected with a similar nine de-
gree spline. The connection condition at pointsA and
D of both nine degree splines gives the remaining con-
ditions. Figure 10 illustrates this construction.

Remark 1 PointsA and D (functionf values in the cen-
ters of the hypercubes) are not regularly spaced on the in-
terval [0, 1], since their abscissas are given by function� ,
and depend on random valuesynij � [0, 1]. The placement
of pointsB andC in the circles centered inA andD must
preserve the order of points:A, B, C, D , i.e. the radius of
these circles must be smaller than half of the length between
the two pointsA andD.

To determine the weightsan and to choose the points in
function� , Igelnik creates a neural network using a stochas-
tic method (ensemble approach).N layers are successively
built. To add a new layer,K candidate layers are gener-
ated. Every candidate layer is added to the existing neural



Figure 9. From [5], plot of � . On the inter-
vals I n (j ) and I n (j + 1) , � has constant val-
ues, respectively ynij and ynij +1 . A nine de-
gree spline connects two plateaus.

Figure 10. From [5], plot of gn . Points A and
D are obtained with function � and function
f .

network to obtainK candidate neural networks. We keep
the layer from the network with the smallest mean squared
error. The set ofK candidate layers have the same plateaus
ynij . The differences between two candidate layers are the
set of sampling points located between two intervalsI n (j )
andI n (j + 1) , that are randomly chosen, and the placement
of pointsB andC.

4.3. Neural network stochastic construction

The N layers are weighted by real numbersan and
summed to obtain the �nal approximation of the function
f . Three sets of points are constituted: a training setDT , a
generalization setDG and a validation setDV . For a given
layer n, using the training set, a set of points constituted
by the approximation of the neural network (composed of
n Š 1 layers already selected) and the current layer (one of
the candidate) is generated. The result is written in a matrix,
Qn , constituted of column vectorsqk , k � � 0, n� that corre-
sponds to the approximation( �f ) of thekth layer for points

set
�
(x1,1, ..., xd,1), ..., (x1,P , ..., xd,P )

�
of DT :

Qn = [ q0, q1, ..., qn ], with � k � [0, ..., n],

qk =

�

�
�f k (x1,1, ...xd,1)

...
�f k (x1,P , ...xd,P )

�

� .

Remark 2 N + 1 layers are generated for the neural net-
work, whereas onlyN layers appear in equation 5: the �rst
layer (corresponding to column vectorq0) is a initialization
constant layer.

To determine coef�cientsan , the gap betweenf and its
approximation�f must be minimized:

� Qn an Š t� , noting t =

�

�
f (x1,1, ..., xd,1)

...
f (x1,P , ..., xd,P )

�

� . (6)

The solution is given byQŠ 1
n t. An evaluation of the solu-

tion is proposed by Igelnik in [4]. The result is a column
vector (a0, ..., an )T : we obtain a coef�ciental for each
layer l , l � � 0, n� . To choose the best layer amongst the
K candidates, the generalization setDG is used. Matrix
Q�

n is generated as matrixQn , using the generalization set
instead of the training set. Equation 6 is solved, replacing
matrixQn with Q�

n , and using coef�cientsan obtained with
matrix Qn inversion. The neural network associated mean
squared error is determined to choose the network to select.

The algorithm is iterated untilN layers are constructed.
The validation error of the �nal neural network is deter-
mined using validation setDV .

4.4. Results

We have applied Igelnik’s algorithm to gray level im-
ages. Figure 11 represents two layers: �rst (N = 1 ) and last
(N = 10) layer. The ten layers are summed to obtain the �-
nal approximation. Figure 12 represents the approximation
obtained with Igelnik’s algorithm withN = 10 layers. Two
cases are considered: the sum using optimized weightsan

and the sum of every layer (without weight). The validation
error is 684.273 with optimized weightsan and 192.692 for
an = 1 , n � � 1, N � . These �rst results show that every
layer should have the same weight.

5. Discussion and comparison

Sprecher andal. have demonstrated in [9] that we ob-
tain a space-�lling curve by inverting function� . Figure 13
represents the scanning curve obtained with the function�
inversion, that connects real couples. For a 2D space, each
couple(dkr 1, dkr 2) (kr = 2 in �gure 13) is associated to a



Figure 11. Two decomposition layers: (a)
First layer. (b) Last layer.

real value in[0, 1], that are sorted and then connected by the
space �lling curve.

We can generate space �lling curves for Igelnik internal
functions as well. We obtain a different curve for each layer
(a new function� is de�ned for each layer). Moreover, each
function� has constant values over tilage blocks, which in-
troduces indetermination in space �lling curves: different
neighbor couples(dkr 1, dkr 2) have the same image by func-
tion � . Figure 14 and �gure 15 are two different views of a
space �lling curve de�ned by a function� of Igelnik’s algo-
rithm. Neighbor points connections can be seen: horizontal
squares correspond to a function� plateau image by func-
tion � .

Sprecher’s algorithm generates an exact decomposition.
The function constructions are explicitly de�ned, which
simpli�es implementation. Unfortunately, external mono-
variate function constructions are related to internal func-
tion de�nitions andvice versa, which implies that mono-
variate function modi�cations require large algorithm redef-
initions. Igelnik’s algorithm, on the other hand, generates
larger approximation error, but internal and external func-
tion de�nitions are independent.

6. Conclusion and perspectives

We have dealt with multivariate function decomposition
using Kolmogorov superposition theorem. We have pre-
sented Sprecher’s algorithm that creates internal and exter-
nal functions, following theorem statement: for every func-
tion f to decompose, an inner function is used, and several
external functions are created. Then, we have applied the al-
gorithm to bivariate functions, illustrated on gray level im-
ages. The results show that the algorithm rapidly converges
to the original image. Finally, we have presented Igelnik’s
algorithm and its application to gray level images.

This preliminary work shows several interesting proper-
ties of the decomposition. An image can be converted into a
1D signal: with bijectivity of function� , every pixel of the
image is associated with a value in[0, 1]. Several questions

Figure 12. (a) Original image. (b) IgelnikÕs ap-
proximation for N = 10 and identical weight
for every layer. (c) Absolute difference be-
tween IgelnikÕs approximation (b) and orig-
inal image. (d) IgelnikÕs approximation for
N = 10 and optimized weights an . (e) Abso-
lute difference between IgelnikÕs approxima-
tion (d) and original image

remain open: How can space-�lling curves be controlled?
Can we generate different curves for some speci�c areas of
the image? The main drawback of Sprecher’s algorithm is
its lack of �exibility: inner functions� cannot be modi-
�ed; space-�lling curve,i.e. images scanning, is always the
same function. Igelnik’s algorithm constructs several inner
functions (one per layer), that are not strictly increasing: we
obtain several space-�lling curves, at the cost of indetermi-
nations for particular areas (on tilage blocks). Due to Igel-
nik’s algorithm construction, we can adapt inner function
de�nition. Few scanning functions could be tested (scan-
ning of areas with the same gray levels for example), and
resulting external functions and approximations observed.
Several questions remain open: which part (internal or ex-
ternal) does contain most of information? Can we describe
images with only inner or external functions? Optimal func-



Figure 13. SprecherÕs space Þlling curve.

Figure 14. IgelnikÕs space Þlling curve, top
view.

Figure 15. IgelnikÕs space Þlling curve, 3D
view.

tion constructions induce data compression. An other possi-
ble application is watermarking. A mark could be included

using several methods: information contained into a layer
could be modi�ed to de�ne a mark, or de�ne a speci�c
space-�lling curve.
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