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A METHOD OF SOLVING
A CONVEX PROGRAMMING PROBLEM

WITH CONVERGENCE RATE O(1/k?)
uDc si

YU. E. NESTERQV

1. In this note we propose a method of solving a convex programming problem in a
Hilbert space E. Unlike the majority of convex programming methods proposed earlier,
this method constructs a minimizing sequence of points {x,}3 that is.not relaxational.
This property allows us to reduce the amount of computation at each step to a minimum.,
At the same time, it is possible to obtain an estimate of convergence rate that cannot be
improved for the class of problems under consideration (see [1]).

2. Consider first the problem of unconstrained minimization of a convex function f(x).
We will assume that f(x) belongs to the class C'"'( E), i.e. that there exists a constant
L >0 such that forallx, y € E

(1) £ (x) = fF(»)|<Llx—y.

From (1) it follows that for all x, y € E

(2) f(¥) <f(x) + (f(x), » = x)+ 0SLy = 2l
To solve the problem min{ f(x)|x € E} with a nonempty set X* of minima we propose.
the following method. :
0) Select a point y, € E. Put
(3) k=0, ay=1, x,=w, e, =|y— 2/ (x) -7
where z is an arbitrary point in E, z # y, and f'(z) % ['()y).
1) kth iteration. a) Calculate the smallest index { = 0 for which

(4) ) = o — 27 f1(3y) = Z_Il_lak—l“f’(yk)||2~
b) Put
oy =2 = o f ()
(5) g = (1+aai +1) 22,

Ywr = X+ (@ = Do — x4 )/8541-

The way in which the one-dimensional search (4) is halted is similar to that proposed in
[2]. The difference is only that in (4) the subdivision in the kth iteration is done starting
with e, _, (and not with 1 as in [2]). In view of this (see the proof of Theorem 1), when the
sequence {x,}7 is constructed by method (3)-(5), no more than O(log, L) such subdivi-
sions will be made. The recalculation of the points y, in (5) is done using a “‘ravine” step.
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Let us also remark that method (3)(5) does not guarantee a monotone decrease of f(x) on
the sequences {x, ) and {y, }7.

THEOREM 1. Let f(x) be a convex function in C"\(E), and suppose X* +# @. If the
sequence {x, | is constructed by method (3)-(5), then the following assertions are true:

1) Forany k = 0, '
(6) flx) —fr<sc/k+2),
where C = 4L||y, — x*||* and f* = f(x*), x* € X*.

2) In order to achieve accuracy € with respect to the functional, one needs

a) to compute the gradient of the objective function no more than NG = lyC/e] times, and
b) to evaluate the objective function no more than NF = 2NG + Hog (2 La_ ) + 1 times.

Here and in what follows, ](-)[ is the integer part of the number (- ).
PrOOF. Let y,(a) = v, — af'( y, ). From (2) we obtain
2
f(3) = f(n(@)) = 0.5a(2 — aL)[|f(y )]

Consequently, as soon as 2 'a; | becomes less than L7, inequality (4) will be satisfied
and a, will not be further decreased. Thus a;, = 0.5L "' for all k = 0.

Let p, = (g, — I)x,—y —x). Then py i) — x40 = pyp — x40+ a0 (Vi)
Consequently,
||PA+| — KT x*“_ :HPJ& — X+ X*[r 1 z(aa.l 1 ])ak+l<f’{ykl 1) PJ.-)

3 g 2
+2a, ., 1<f'(_”;\- L ) = Y+ 1>+ ah]“iﬂ“f(}’ﬂl)” .
Using inequality (4) and the convexity of f(x), we obtain
2
<f’U’k+1)~ Yoy ™ X*>;f(xk+1) = 0-5“k+1|f’()}2 | 1)” .
0.5a, |Hf’(}’1.-+-1)||- < f(¥es1) _f(_x,q+|) < f(x;) _f(xk-f-l)
—aha F U)o

We substitute these two inequalities into the preceding equality:

12er = et + x4 = llpe = xp + 221 < 2y = Vet s (S i) 2
—2a;, 0 (O —f*) + (afﬂ = f*';c+|)‘f’ﬁr%-|”f’(.1ﬁrc+|)||2
< 2ay 0 (M) — %) + E(af,_” — gy o () — f(x00))
=2 a;(f(x,) = f*) = 205 (f(xeh)) = f*)
< 2auap( f(xy) —f*) — 20y @i f(xq0) — ).

Thus

2a; 1@ (flxey) — %) < 201851 (f(xp1) — ) Hlpesr — Xpiy X*”z

< 2e,a,( f(x) — f*) +lpp — i + X"‘H2

< 2a0a3( f(x0) = f*) +llpo = 0 + 2 <llyo — ¥’

It remains to observe thata; | = a, + 05 =1+ 0.5(k + 1).

It follows from the estimate of the convergence rate (6) that the number of iterations
method (3)-(5) needs to achieve accuracy € will be no greater than WC/e[ — 1. During
each iteration, one gradient and at least two values of the objective function will have to
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be calculated. Let us remark, however, that to each additional evaluation of the objective
function corresponds a halving of «,. Therefore the total number of such evaluations will
not exceed [log,(2La_;)[ + 1. This completes the proof of the theorem.

If the Lipschitz constant L is known for the gradient of the objective function, then one
can take «, = L' in the method (3)-(5) for any & = 0. In this case inequality (4) is certain
to hold, and therefore Theorem 1 remains valid for € = 2LJ|y, — x*|°. Ng =
Ilyo — x*y2L/e[ —'1 and NF = 0.

To conclude this section we will show how one may modify the method (3)—(5) to solve
the problem of minimizing a strictly convex function.

Assume that f(x) — f* = 0.5m||x — x*|* for all x € E, where m > 0, and suppose the
constant m is known,

We introduce the following halting rule in the method (3)—(5):

¢) We stop when

(7) k=2{2/(may) — 2.

Suppose that the halting has occurred in the Nth step. Since , = 0.5L " in the method
(3)-(5), one has N < |4,/L/m|[ — 1. At the same time,
20y — x4 2
2o = XU < 0 25mlly, — x** < 0.5(f(30) — 1#)-

flxy) —f*= ay(N +2)°

After the point x, has been obtained, it is necessary to restart the method and again
begin calculating, by the method (3)—(5), (7). from the point x as the initial point, etc.

As a result we obtain that after each |4,/L/m[ — 1 iterations the residual with respect
to the function decreases by a factor of 2. Thus the method (3)—(5) with renewal (7)
cannot be improved (up to a dimensionless constant) among methods of first order on the
class of strictly convex functions in C"'(E) (see [1]). - e

3. Consider the following extremal problem:

(8) min{ A(f(x)) | x € 0},

where Q is a convex closed set in E, F(u), with ¥ € R™, is a function convex on all of R"™,
positive homogeneous of degree one, and f(x) = (fi(x)....[,(x)) is a vector of convex
continuously differentiable functions on E. The set X* of solutions of (8) is always
assumed to be nonempty. In addition to this, we will always assume that the system of
functions { F(-), f{-)_} has the following property:

(+) If there exists a vector A € 3F(0) such that A*) < 0, then f,(x) is a linear function.

The notation dF(0) means the subdifferential of the function F(u) at 0.

As is well known, the identity F(u) = max{(A, u)|A € dF(0)} holds for convex func-
tions that are positive homogeneous of degree one. Therefore the assumption (*) implies
the convexity of the function F( f(x)) on all of E.

Problem (8) can be written in minimax form:

(9) min{max[(k,f(x))h\EBF(O)H.EEQ}.

One can show that the fact that the set X™* is nonempty and the assumption () imply
the existence of a saddle point (A*, x*) for problem (9). Therefore the set of saddle points
of problem (9) can be written as £* = A* X X*, where

A* = Argmax{¥(A)| A € 0F(0)},  ¥(\) = min{(A, f(x))| x € Q).
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The problem
max{W¥(A)| A € 9F(0) N dom¥(-))}
will be called the problem dual to (8).
Suppose the functions fﬂ_{x_). k =1,...,m, in problem (8) belong to the class CY(E)
with constants L% = 0. Let L = (L",. .., L),
Consider the function
(y, A4, z) = F(f(y,2)) +0.54]ly — 2",

where

flriz) = (£ s 2)ieef ™ X)),
FOy2) SR+ CEE—3) B=120aum,
and A is a positive constant. Let
®*(y, A) = min{®(p, 4,z)|z€Q}, T(y,A)=argmin{®(y, 4,z)|z € Q}.

Observe that the mapping y — 7( y, a) is a natural generalization, for problem (8), of the
“gradient” mapping introduced in [1] in connection with the investigation of methods of
minimizing functions of the form max,_,,, f,(x). For the mapping y — T(y, A) (as well
as for the “gradient” mapping of [1]) we have

(10)  @*(y, 4) + A(y — T(y, 4), x — )+ 054y — T(y, )" < F(f(x)).
forallx e O,y € Eand A =0, and if A = F(L), then
@*(y, A) = F(f(T(v, 4))).

To solve problem (8) we propose the following method.
0) Select a point y, € E. Put

(11) k=0, ag=1;, %, =y, A, =FLy);
where L, = (L{,...,L{™), LI = | fi30) — fU2N/l1% — 2|l and z is an arbitrary point
inkE, z# y,.
1) kth iteration. a) Calculate the smallest index / = 0 for which
(12) ‘b*(hsziAa-l)QF(J'F(T()’wZ‘Ak—J))-

b) Put 4, = 24, |, x, = T(y,, A,) and

) ey = (14 aai + 1) 72,

Piery =X+ (@p— D — 241 ) faiye

It is not hard to see that the method (3)—(5) is simply another form of writing the
method (11)—(13) for the unconstrained minimization problem (i.e., whenm = 1, F(y) =y
and Q = E in (8)).

THEOREM 2. If the sequence {x, ) is constructed by method (11)-(13), then the following
assertions are [rue:
1) Forany k =0

F(f(x,)) = F(F(x*) < €/ (k +2)",
where C, = 4F(L)||y, — x*|* x* € X*.
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2) To obtain accuracy € with respect to the functional. one needs
a) to solve an auxifiary problem min{®( y,, A, x)|x € Q} no more than

1/C1/e [ +1max{logo( F(L)/A4.,),0]

times,
b) to evaluate the collection of gradients f{( y).....f4( ¥) no more than /C, /¢ [ times, and
¢) to evaluate the vector-valued function f( x) at most

2)/C, /e[ + 1 max{log,( F(L)/A_,).0}(
times.

Theorem 2 is provéd in essentially the same way as Theorem 1. It is only necessary to
use (10) instead of (2), while the analogue of «, f'( y,) will be the vector y, — T(y;, 4,),
and the analogue of a, the values of A;'.

Just as in the method (3)—(5). in the method (11)-(13) one can take into account
information about the constant F( L) and the parameter of strict convexity of the function
F( f(x)) — m (for this, of course, we must have y, € Q).

In conclusion let us mention two important special cases of problem (8) in which the
auxiliary problem min{®( y,, 4, x)|x € Q} turns out to be rather simple.

a) Minimization of a smeoth function on a simple set. By a simple set we understand a set
for which the projection operator can be written in explicit form. In this case m = | and
F(y) = yin problem (8). and

®*(y, 4) = f(y) — 0.547
in the method (11)-(13), where
T(y.4) = agmin{lly —47f"(y) — 2|z € ,Ql._ﬁ -

PN+ 054 T(p, 4) =y + 47 ()]

b) Unconstrainted minimization (in problem (8), Q = E). In this case the auxiliary
problem min{®( y, 4. x)|x € E} is equivalent to the following dual problem:

2 m

+ 3T AMf(y)

k=1

3 M%)

k=1

(14) max{D.SA" (XD, XD mt) e BF(O)}.

Here

L2
T(y, A) =y — A" T XN R(»).
k=1
where the X*)(y), k = 1,....m. are solutions of problem (14) for fixed y € E. Let us
remark that the set 3F(0) is usually given by simple constraints—linear or quadratic. In
such cases problem (14) is the standard quadratic programming problem.
The author expresses his sincere appreciation to A. S. Nemirovskii for discussions that
stimulated his interest in the questions considered here.
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