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ABSTRACT 1 

Connected and automated vehicle technologies are likely to have significant impacts on not only 2 
how vehicles operate within the transportation system, but also on how individuals behave and 3 
utilize their vehicles.  While many connected and autonomous vehicle technologies have the 4 
potential to increase network throughput and/or efficiency, i.e. connected adaptive cruise control, 5 
eco-signals, many of these same technologies have a secondary effect of reducing driver burden 6 
which can drive changes in travel behavior. Such changes in travel behavior, in effect lowering 7 
the cost of driving, have the potential to greatly increase the utilization of the transportation 8 
systems with concurrent negative externalities such as congestion, energy use, emissions, and so 9 
on, working against the positive effects on the transportation system due to increased capacity.  10 
To date relatively few studies have analyzed the potential impacts on CAV technologies from a 11 
systems perspective, often focusing on gains and losses to an individual vehicle, at a single 12 
intersection, or along a corridor.  However, travel demand and traffic flow is a complex, 13 
adaptive, non-linear system, so in this study we use an advanced transportation systems 14 
simulation model, POLARIS, which includes co-simulation of travel behavior and traffic flow, 15 
to study potential impacts of several connected and automated vehicle technologies at the 16 
regional-level.  We have analyzed various market penetration levels and changes in travel time 17 
sensitivity to determine a potential range of VMT impacts from various CAV technologies. 18 
  19 
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Automated vehicle technologies might have significant impacts on many aspects of the 1 
transportation system. Various CAV technologies, such as connected adaptive cruise control, 2 
assisted driving or autopilot systems, or connected intersections among others, will change not 3 
only how vehicles operate within the transportation system, but also on how individuals behave 4 
and utilize their vehicles.  Much of the focus to date has been on how individual technologies 5 
may increase network throughput and/or efficiency, enhance safety, and offer other positive 6 
benefits to the overall transportation system.  However, many of these same technologies have a 7 
secondary effect of reducing driver burden which can drive changes in travel behavior. Such 8 
changes in travel behavior, in effect lowering the cost of driving, have the potential to greatly 9 
increase the utilization of the transportation systems with concurrent negative externalities such 10 
as congestion, energy use, emissions, and so on, working against the positive effects on the 11 
transportation system due to increased capacity and efficiency.  Therefore, understanding the 12 
impacts of CAV technologies on the demand for travel, becomes an important component to 13 
quantifying the overall impact of such technologies. To date relatively few studies have analyzed 14 
the potential impacts on CAV technologies from a systems perspective, often focusing on gains 15 
and losses to an individual vehicle, at a single intersection, or along a corridor. Therefore, as a 16 
demonstration, we analyze the potential regional impacts of a range of CAV technology, ranging 17 
from Connected Adaptive Cruise Control (CACC) up to full, but not driverless, automation. 18 
 19 
In this study we use an advanced transportation systems simulation model, POLARIS, which 20 
includes co-simulation of travel behavior and traffic flow, to study potential impacts of several 21 
connected and automated vehicle technologies at the regional-level.  We have analyzed potential 22 
impacts, in terms of changes in vehicle miles travelled, over various market penetration levels for 23 
a feasible range of changes in travel time sensitivity to determine a potential range of VMT 24 
impacts from CAV deployment. We demonstrate the impact of CAV on mobility patterns in 25 
Chicago metropolitan area, a region with a population of 10.2 million people and covers portions 26 
of 20 counties in northern Illinois, southern Wisconsin and northwestern Indiana.  The travel 27 
demand model is an activity based model that is sensitive to the changes in congestion patterns 28 
and value of time. The mesoscopic traffic flow model allows for aggregated representation of the 29 
changes in traffic flow as a result of automated vehicles present in the flow. Changes in travel 30 
activities are simulated simultaneously with the traffic flow, thus the outcome of the simulation 31 
model includes both highway network performance as well as individual activity patterns. 32 
 33 

LITERATURE REVIEW 34 

Possible changes in travel demand due to connectivity (V2V and V2I) and increased automation 35 
are uncertain, and estimates from the few studies of travel demand impact vary widely, 36 
especially for high levels of automation. Fagnant and Kockelman (2015) and Brown et al (2013) 37 
reviewed several such sources, and list possible ways that vehicle automation may impact travel 38 
behavior including: providing mobility for non-drivers, changes in parking patterns due to self-39 
parking cars, increased travel by underserved population segments (e.g., young children and 40 
disabled), and increased travel induced by a lower perceived cost of travel time. 41 
  42 
In addition, if crashes and congestion are reduced, travel may be faster and more reliable, and 43 
travel demand may increase. Less congestion and fewer crash delays would effectively increase 44 
capacity, which could induce increased travel. Travel demand induced by increased capacity was 45 
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reviewed by Cervero (2001) who reported a range of elasticities of urban VMT with respect to 1 
lane-miles of 0.47 to 1.0. However, capacity increases from vehicle connectivity and automation 2 
are not the same as an increase in lane-miles; they may increase throughput on existing lanes, but 3 
do not increase network connectivity or accessibility to more destinations. Hymel et al (2010) 4 
estimated elasticities of VMT with respect to lane-miles, disaggregating the VMT change due to 5 
a change in road-miles from that due to a change in lane-miles (at constant road-miles), and 6 
found much lower values for the elasticity with response to lane-miles: 0.037 short-run, 0.186 7 
long-run. This indicates that increasing capacity by vehicle connectivity and automation without 8 
increasing network connectivity with new roads would induce less VMT increase than the 9 
elasticities reported by Cervero would imply, however, the influence of CAVs on future VMT is 10 
highly uncertain, and depending on how CAVs will be adopted and used. 11 
  12 
In a recent report, KPMG projected personal travel in the U.S. to increase by approximately 500 13 
million person-miles-traveled (PMT) due mostly to population growth, but PMT could increase 14 
by twice this amount due to increased use of mobility-as-a service, enabled by connectivity and 15 
automation, especially by persons 16-24 years old and 65-84 years old. Corresponding increases 16 
in VMT are highly uncertain due to the uncertainty in average vehicle occupancy, depending on 17 
the adoption of ridesharing and automated vehicles which may travel unoccupied part of the 18 
time. A wide range of potential VMT impacts was estimated by Wadud et al (2016): VMT 19 
increase of 4-13% with partial vehicle automation (e.g., driver assist), and 30-60% for full 20 
automation. A large component of the VMT impact was the change in the value of travel time. 21 
They assumed a range of travel time value in fully automated vehicles from 20% to 50% of the 22 
value of time spent driving a conventional vehicle. 23 
 24 
Childress et al (2015) assessed the potential change in patterns in the Puget Sound region in 25 
scenarios modeled using an activity-based travel model. Scenarios analyzed included a 30% 26 
increase in existing roadway capacity, which resulted in a 3.6% increase in VMT, a decrease in 27 
perceived value of travel time cost of 35% for the highest-income households in addition to the 28 
30% increase in capacity, which gave a VMT increase of 5.0%. In a third scenario, which 29 
assumed that everyone owned an automated vehicle (none of which were shared), a 30% 30 
increase in roadway capacity, and a 50% reduction in parking costs, VMT increased 19.6%, with 31 
an increase in average commuting distance of 60%. Notably in the third scenario Childress et al 32 
found increased delays (17.3% increase in vehicle-hours-traveled). They remarked that people 33 
may be more willing to travel in congested conditions in automated vehicles. 34 
  35 
Gucwa (2014) used another activity-based model to simulate travel in the San Francisco Bay 36 
area under different assumptions about the resulting capacity increases from automation (none, 37 
10% and doubling). He estimated a 4 to 8% increase in VMT (up to 14.5% increase if a zero cost 38 
of travel time was assumed for traveling in an automated vehicle). Levin & Boyles (2015) 39 
hypothesized a travel demand model that they used in a four-step transportation model, and 40 
found that increased road capacity could increase travel demand, including travel by empty 41 
automated vehicles being repositioned. Gucwa, Childress et al., and Levin & Boyles did not 42 
model changes in land use, e.g., changes in spatial distributions of residences or job locations. 43 
With such changes included, VMT increases could be significantly higher. 44 
The potential increase in travel by the underserved is also very uncertain. Harper et al (2015) 45 
examined travel by people with medical conditions, non-drivers, and the elderly in the 2009 46 
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National Household Travel Survey (NHTS), and they estimated a total potential increase of 1 
VMT of 12%. Brown et al. (2014), also using NHTS data, estimated a potential increase of up to 2 
50% in VMT by underserved, based on different assumptions about how each segment would 3 
increase their travel in automated vehicles. Using more conservative assumptions, MacKenzie et 4 
al (2014) analyzed travel by young and elderly in the NHTS, and estimated possible increases of 5 
VMT from 2 to 10%. All of these estimates assumed travel by underserved would be facilitated 6 
by fully automated vehicles, since little impact on travel by this population would be expected 7 
from partial automation. 8 
  9 
Some changes in travel behavior are results of increased network capacity and reduced travel 10 
times as a result of automation. Several authors analyzed impact of Cooperative adaptive cruise 11 
control (CACC) and automation on traffic flow. CACC combines the adaptive cruise control 12 
with the vehicle to vehicle communication that allows improved speed control strategies. 13 
Forward vehicles communicate information about downstream traffic and provide speed 14 
recommendations. The goal of CACC is to improve three metrics associated with a 15 
transportation system, namely mobility (reduce congestion), sustainability (reduction in energy 16 
used) and safety. This improvement come from reduced headways between vehicles while 17 
maintaining traffic flow speed, and thus improving road throughput and avoiding traffic flow 18 
breakdowns at high density traffic flows. CACC improves on autonomous adaptive cruise 19 
control by allowing vehicle to receive information about lead vehicle earlier that allows to 20 
develop better control algorithms (Lu 2011) and keep the following distance as close as 0.6 21 
seconds (Nowakowski 2010). Additional energy reduction benefits come from reduced drag 22 
forces experiences by following vehicles due to reduced air resistance. There are several studies 23 
that show energy benefits of truck and vehicle platoon in isolated test environments that utilize 24 
tightly-coupled platooning. 25 
 26 
A study involving 3 trucks driving at distance of 0.45 seconds at the speed of 80 km/h was 27 
presented in Tsugawa 2013. The control algorithms for lateral movement relies on radar 28 
measurements as well as communication between the vehicles.  Analysis of the field data shows 29 
14% savings in energy. Under similar speed (60 and 80 km/h) and headway conditions (from 0.3 30 
to 0.45 seconds) a platoon of two trucks we studied by Bonnet (2000). The trucks were 31 
connected through an electronic system that consists of a vehicle to vehicle controller, a tow bar 32 
controller and image processing unit. Overall, the reduction in fuel consumption ranged from 15 33 
to 21 percent at 80 km/h, and 10 to 17 percent at 60 km/h. There was a 3 percent fuel 34 
consumption error factor at 80 km/h, and a 4.4 percent fuel consumption error factor at 60 km/h. 35 
 36 
Browand (2004) studied fuel consumption of two tandem trucks linked via an electronic control 37 
system and report 8-11% fuel savings. Alam (2010) tested speed control algorithms for follow 38 
vehicle that uses information about the road ahead sensed by the lead vehicle. They showed 5-39 
8% fuel efficiency improvement. Computational fluid dynamics simulation performed by Davila 40 
(2013) confirm the field studies and show that optimal headway distance to reduce the drag 41 
forces is 6-8 meters and potentially lead to 7-15% fuel savings. Similar studies were performed 42 
for light duty vehicles (Shida 2009, 2010, Eben 2013, Shladover 2013). Fuel efficiency 43 
improvements with CACC using constant-time-gap-following criteria in normal traffic 44 
conditions have not yet been demonstrated. Several simulation studies showed that CACC that 45 
enables shorter following gaps increases capacity from the typical 2200 vehicles per hour to 46 
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almost 4000 vehicles per hour at 100 percent market penetration. In a study Vander Werf et al 1 
(2002) estimated the effects of CACC using Monte Carlo simulation based approach that utilizes 2 
detailed models of vehicle control 3 
 4 
However, improvement in mobility metrics might lead to secondary impacts, such as increase in 5 
travel demand.  The goal of this paper is to study the interaction between the improved traffic 6 
flow and changes in demand induced by value of travel time reductions along with reduced 7 
congestion. Our study builds on past work by Gucwa and Childress et. al., as well as previous 8 
analysis of changes in network capacity due to automation. We analyze potential changes in 9 
travel demand due to various CAV deployment scenarios and potential behavior impacts, from 10 
simple CACC at the low end to full automation. This analysis, however, is limited to privately 11 
owned vehicle contexts (no shared fleets) and assumes a driver is always in the vehicle (no zero-12 
passenger trips).  We utilize a unique transportation systems simulation model Polaris, where 13 
travel demand and traffic flow are directly and continuously integrated, to model likely 14 
scenarios.  The research incorporates the analysis of demand under a feasible range of travel time 15 
valuations, and incorporates research on link capacity changes under various market penetration 16 
levels of CACC to formulate the scenarios.  Next, the activity-based model which forms the 17 
basis for the research is discussed. 18 
 19 

POLARIS ACTIVITY-BASED TRANSPORTATION SYSTEMS MODEL 20 

The POLARIS activity-based travel demand simulation model is a fully-integrated simulation of 21 
both individual travel and intelligent transportation system operations that has been developed 22 
using an agent-based modeling framework (Auld et al 2015). The model consists of a series of 23 
components found in travel demand, network simulation and operations models. At the center of 24 
the model is a person-agent which represents the travelers in the system and their activity and 25 
travel planning behavior. The travelers operate in an environment represented by the 26 
transportation network agents to handle movements through the system. The various components 27 
are discussed in the following section. 28 
 29 

Activity-based travel demand modeling 30 

The POLARIS Integrated activity-based travel demand and transportation systems simulation 31 
model (Auld et al 2015), was used to simulate CAV deployment.  POLARIS includes an 32 
activity-based demand model which is implemented as a series of actions and behaviors that 33 
traveler agents engage in during the simulation process for generating their activity-travel needs. 34 
The demand behaviors modeled include time-dependent activity generation, within simulation 35 
activity attribute planning and re-planning, and a detailed activity scheduling model which 36 
resolve schedule conflicts and maintains a consistent daily schedule for the agent. The demand 37 
components are also responsive to network and traffic management events, which can result in 38 
agent re-planning. The demand components implemented in the POLARIS demonstration model 39 
derive from previous work in modeling activity-planning and scheduling behaviors found in the 40 
development of the ADAPTS (Agent-based Dynamic Activity Planning and Travel Scheduling) 41 
model (Auld and Mohammadian 2009). The demand model is an activity-based computational 42 
process model, which simulates the underlying activity and travel planning and scheduling 43 
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processes. The model continuously integrates with traffic simulation where the generation, 1 
planning and scheduling of activities occurs in continuous time and is co-simulated along with 2 
the time-dependent traffic simulation. 3 
 4 
The planning behaviors implemented in the model include destination choice, route choice, mode 5 
choice, etc. all include cost components relating to the expected travel time which vary based on 6 
a number of factors that theoretically may change under CAV deployment by reducing the 7 
burden associated with travel.  For example, the location choices and mode choices for generated 8 
activities are made using a variation of the MNL random utility maximization model, where one 9 
of the utility components is the travel time to the destination, or using the selected mode.  By 10 
varying the utility parameters for travel time we can represent changes in travel time valuations 11 
for subgroups of the overall modeled population which have access to CAV technologies.  It is 12 
important to note that the choices are still constrained by scheduling, resource availability, time 13 
availability and other constraints, as well as the temporal and spatial distribution of activity 14 
opportunities, available modes, etc. The overall simulation flow, interactions between the 15 
demand model components and between the demand model and the network model are shown in 16 
Figure 1. The figure shows the basic simulation process which each traveler agent follows in the 17 
POLARIS model, and the time resolution at which the various discrete events are scheduled.  18 
Next, the traffic simulation model is discussed. 19 
 20 

 21 
Figure 1 – Activity-based travel demand model 22 

 23 

Traffic simulation 24 

The traffic simulation model involves solving a set of partial differential equations for the 25 
Newell’s Simplified Kinematic Waves Traffic Flow model (Newell, 1993). The model is used as 26 
the traffic simulation model agent in the POLARIS framework. The traffic simulation model 27 
includes a set of traffic simulation agents for intersections, links, and traffic controls, which take 28 



Auld, Sokolov, Stephens  8 
 

input from the individual route choice and movement actions of the person agent. Given as input 1 
a set of travelers with route decisions and the traffic operation and control strategies in the 2 
network, the network simulation model agent simulates traffic operations and controls to provide 3 
capacities and driving rules on links and turn movements at intersections. With these capacity 4 
and driving rule constraints, link and intersection agents simulate the traffic flows using 5 
cumulative departures and arrivals as decision variables based on the Newell’s Simplified model, 6 
which then determines the network performance for the route choice model, the demand model, 7 
and as well as the ITS model in the integrated framework. The traffic simulation model agents 8 
also produce a set of measures of effectiveness (MOE) such as average speed, density, and flow 9 
rate, as well as individual vehicle trajectories. 10 
 11 

Traveler information and decision making 12 

Traveler decision making is represented in POLARIS as a set of route choice and route re-13 
planning behaviors.  The route choice model describes traveler agents’ dynamic route choice 14 
decisions with response to pre-trip and en-route traffic information. All travelers are assumed to 15 
be able to access prevailing traffic information prior to departure. Equipped travelers can access 16 
real-time traffic information during their trip through their equipped devices with navigation 17 
services using real-time traffic information. Unequipped travelers can access real-time traffic 18 
information disseminated from a TMC through ATIS dissemination infrastructures such as VMS 19 
and Radio to respond to both recurrent and non-recurrent traffic congestions. A bounded 20 
rationality en-route switching model (Jarakrishnan et al. 1994) is used to realistically address the 21 
en-route switching behavior of traveler agents. This route choice modeling framework also 22 
incorporates traveler agents’ dynamic route choice decisions with response to experienced traffic 23 
by comparing experienced route travel time to the expected travel time as each network node is 24 
traversed (i.e. if the current route is performing poorly the bounded rationality switching model 25 
is triggered), and by implementing a look-ahead function in which the real-time travel time for 26 
the next link is evaluated. This allows traveler routes to evolve and respond to congestion even in 27 
the absence of ATIS. Route switching is also triggered through interaction with VMS or radio by 28 
comparing messages against the links in the current trip, and evaluating the travel route 29 
incorporating the message information. In the route choice model for each traveler agent, we 30 
implement a weighted A-Star shortest path algorithm. This implementation allows the 31 
parallelization of route calculations by each individual, and enables heterogeneous route cost 32 
functions to be utilized, which can incorporate the effects of CAV technology availability to 33 
individual travelers.  For example, travelers with CACC may seek to minimize non-highway 34 
travel due to the perceived reduction in burden while traveling on the highway. 35 
 36 
Automation impacts on traffic flow 37 
 38 
For this study, the impact of CAV vehicles on traffic flow was assumed to derive from the 39 
CACC capability, i.e. the vehicles function the same as human-driven cars in all other respects. 40 
The only exception to this for the current study was at a 100% market penetration level where we 41 
removed intersection controls to replicate the effect of automated intersections.  We studied the 42 
impact of CACC at different market penetration rates on a regional scale by adjusting the 43 
capacities of road links according to the values reported in Vander Werf (2002) and Shladover 44 
(2012). Figure 2 below shows the relationship between CACC vehicle penetration level (percent 45 
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of equipped vehicle presented in the traffic flow) and improvement in the road capacity. In the 1 
simulation, the CACC penetration rate on each link, defined as the number of equipped vehicles 2 
entering the link divided by the total vehicles entering the link over a five- minute time period, is 3 
continuously updated as agents execute their travel plans. As the penetration rate changes, the 4 
link capacity used in the flow model is updated according to Figure 2, resulting in updated link 5 
performance.   6 

 7 
Figure 2 – Capacity change vs. market penetration of CACC 8 

 9 
 10 

CASE STUDY ANALYSIS 11 

Chicago metropolitan area model 12 

We chose to demonstrate the regional impacts of CAV deployment for the Chicago area. The 13 
POLARIS model of the Chicago metropolitan area has been developed based on an existing 14 
regional travel demand.  The model includes the multimodal transportation planning network 15 
covering portions of 20 counties in northern Illinois, southern Wisconsin and northwestern 16 
Indiana.  The transportation planning network includes 31,278 links and 18,951 nodes as well as 17 
representations of the regional bus and rail lines and stations.  There are approximately 10.2 18 
million travelers living in 3.8 million households in the region, engaging in 27.9 million trips on 19 
an average day, all of which are simulated in the POLARIS model.  The model has been 20 
developed and calibrated against regional survey data, traffic counts and highway detector sensor 21 
data over the past several years, and forms a useful basis for the scenario analysis study. 22 
 23 
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Scenario setup 1 

The scenario definition for the study involves the variation of several model variables in the 2 
baseline POLARIS travel demand model.  First is the market penetration rate, which determines 3 
which travelers are randomly assigned to possess CAV technology.  It is important to note that 4 
the remainder of the scenario variables are only modified for travelers with automation 5 
technology.  Next, the change in traveler value of travel time savings (VOTT) is specified.  This 6 
is implemented as a reduction in any travel time parameters in the underlying choice models as 7 
discussed above.  Due to a lack of empirical data on VOTT changes due to automation, the 8 
values for VOTT changes were varied from no change to 75% reduction which was found to be a 9 
feasible range in the literature, i.e. Mackenzie et al (2013), with the higher VOTT changes 10 
corresponding approximately to increased automation levels with uncertainty. In other words, it 11 
is clear that the VOTT under full automation will be less than under partial automation, but the 12 
exact values are unclear at this time. The capacity increase on individual road segments was also 13 
varied over different scenarios in two ways.  In one set of scenarios, the capacity change alone 14 
was varied from 12% increase to 77% increase - representing feasible ranges from the Shladover 15 
et al study (2012).  In the remaining scenarios, capacity was changed according to the previously 16 
described relation between capacity and market penetration.  Finally, in scenarios where CAV 17 
technology penetration was 100%, we also assume that intersections can be automated and 18 
intersection control is turned off in the model. The input variable ranges can be seen in Table 1. 19 
 20 

Scenario analysis results 21 

The baseline Chicago model, and the 18 separate scenarios described in Table 1, were all 22 
simulated using POLARIS.  The POLARIS model outputs changes for each individual traveler 23 
as well as changes in overall vehicle miles travelled (VMT), vehicle hours travelled (VHT) and 24 
average travel time.  The comparison between the results for each scenario is shown in the table.  25 
In general, it is seen that all of the scenario changes have the effect of increasing vehicle miles 26 
travelled. 27 
  28 
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Table 1 – Scenario setup and analysis results 

Scenario type 
Market 
pen. 

VOTT 
ratio 

Capacity 
increase 

Auton. 
Inter. 

VMT 
(in MM) 

VHT 
(in MM) 

avg travel 
time (min) 

baseline 0% 0% 0% no  275.9   8.6  21.5 

Capacity increase only 0% 0% 12% no  278.5   8.5  21.2 

Capacity increase only 0% 0% 50% no  283.7   8.0  20.2 

Capacity increase only 0% 0% 77% no  287.2   7.9  20.1 

VOTT only - low pen. 20% -25% 0% no  283.1   9.0  22.3 

VOTT only - low pen. 20% -50% 0% no  298.8   9.8  24.1 

VOTT only - low pen. 20% -75% 0% no  324.9   11.1  27.9 

VOTT only - high pen. 75% -25% 0% no  310.2   10.5  26.1 

VOTT only - high pen. 75% -50% 0% no  372.1   15.5  39.2 

VOTT only - high pen. 75% -75% 0% no  437.9   39.7  74.8 

All effects - low pen 20% -25% 3% no  283.5   8.9  22.1 

All effects - low pen 
20% -50% 3% no  298.6   9.6  23.8 

All effects - low pen 20% -75% 3% no  325.7   11.0  27.6 

All effects - med pen 
50% -25% 12% no  298.2   9.3  23.2 

All effects - med pen 50% -50% 12% no  334.1   11.1  28.1 

All effects - med pen 50% -75% 12% no  397.5   15.6  40.3 

All effects - high pen 100% -25% 77% yes  333.2   9.8  24.6 

All effects - high pen 100% -50% 77% yes  404.2   13.8  35.5 

All effects - high pen 100% -75% 77% yes  492.5   24.1  70.5 

 1 
The results for capacity changes induced by CACC alone are shown in Figure 3.  It is seen here 2 
that changes in capacity increase overall VMT, although only to a small degree, with about 4% 3 
induced additional VMT for an increase in capacity of 80%.  The elasticity of VMT with respect 4 
to capacity of 0.05 is in line with short run estimates found in Hymel et al (2010) of 0.037, which 5 
is reasonable as this model is focused on short run, i.e. daily activity choices rather than long 6 
term choices such as residence or workplace, changes in which can induce additional demand. 7 
 8 
 9 
 10 
 11 
 12 
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 1 

FIGURE 3 – VMT CHANGE VS CAPACITY INCREASE (WITH NO VOTT CHANGE) 2 

 3 
Next, we look at the impact of value of travel time changes in isolation, with no change in 4 
roadway capacity due to the technology.  In Figure 4, the results for the two cases, low (20%) 5 
and high (75%) market penetration, for a variety of feasible VOTT reductions are shown.  The 6 
VOTT reduction values represent current conditions (0% reduction), high VOTT reduction 7 
(75%) and two points in between, similar to values used in other studies.  The high VOTT 8 
reduction figure assumes travel time in CAVs is similar in comfort, convenience, and other 9 
factors as experience during travel in high quality transit.  Overall, we find that reducing travel 10 
time cost significantly increases VMT, with an 18% increase in VMT for the high VOTT 11 
reduction case at low penetration levels and a 59% increase at high penetration levels.  As 12 
expected, reducing the cost of travel increases the consumption of travel.  13 
 14 

 15 

FIGURE 4 – VMT CHANGE VS VOTT CHANGE BY MARKET PENETRATION (NO 16 
CAPACITY CHANGE) 17 
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Finally, the results for the scenarios where all effects are evaluated simultaneously are shown in 1 
Figure 5.  In this figure, the VMT changes are plotted against market penetration levels for three 2 
different VOTT reduction levels, where the capacity change is modeled based on the given 3 
market penetration according to Figure 3.  In this case, we have VMT changes under 100% 4 
market penetration ranging from 21% for 25% VOTT reduction up to 79% for 75% VOTT 5 
reduction.  The estimated 5% increase in VMT from the analysis by Childress for 35% reduction 6 
in VOTT and 30% increase in capacity appear to align with these results (assuming the 30% 7 
increase in capacity arises from ~50-60% market penetration. The travel increase for the high 8 
VOTT reduction case, comes with a reduction in average travel speed, from 32mph to 20 mph 9 
and increase in average vehicle hours traveled from about 1 hour to over 2.5 hours and an 10 
increase in average trip time to over 70 minutes, indicating much further trips and more 11 
congestions.  Such changes would require significant activity substitution. These results 12 
demonstrate the wide uncertainty resulting from potential behavioral changes from CAV, which 13 
are still largely unknown due to low levels of deployment of such technologies. It is possible that 14 
there are travel time budget effect or in-vehicle-activity satiation effects which could make such 15 
drastic travel time increases infeasible. 16 
 17 

 18 

FIGURE 5 – VMT CHANGE BY MARKET PENETRATION AND VOTT CHANGE 19 
(ALL EFFECTS) 20 

 21 

DISCUSSION AND CONCLUSIONS 22 

In this research, we have applied an integrated transportation system model to analyze the impact 23 
of a range of hypothesized, privately operated vehicles with CAV technologies on the 24 
performance of the transportation network and changes of mobility patterns in Chicago 25 
metropolitan region. The transportation system model used, called POLARIS allows for 26 
analyzing the interconnection between the changes in the congestion levels, traveler behavior 27 
and activity patterns. We have looked at a wide range of potential scenarios, varying the market 28 
penetration, capacity changes and travel time valuations. Our results show that changes in 29 
capacity increase overall VMT, although only to a small degree, with about 4% induced 30 
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additional VMT for an increase in capacity of 80%.  The elasticity of VMT with respect to 1 
capacity of 0.05.  In contrast, changes in travel time cost, or value of travel time savings, have a 2 
significant impact, especially at very low levels of VOTT, increasing VMT by up to 59% and 3 
while average travel time increases from about 20 minutes to over 70 minutes. This analysis 4 
provides potential feasible bounds for impacts of CACC and other CAV technologies over a 5 
range of penetration levels. However, these results are fairly preliminary and much uncertainty 6 
still exists in terms of what VOTT changes would be experienced. 7 
 8 
There are several possible improvements to the methodology used for analysis. An assumption 9 
on uniform spatial distribution of the equipped vehicles in the region can be improved by using a 10 
probabilistic model that relates the socio-demographic characteristics of people to the likelihood 11 
of owning a vehicle. Such models exist for other vehicle technologies, such as electric vehicles 12 
and can be potentially be used to improve the assumptions about the automated vehicles. 13 
Additionally, an improved traffic flow model would allow the capacity to be dynamically 14 
adjusted for each of the road segments capacity given the current position of CACC vehicles on 15 
that specific link, i.e. are vehicles able to platoon and take advantage of CACC given their entry 16 
times. This would improve upon the current analysis which simply uses the average penetration 17 
rate on the link over a short time interval. Finally, improving the analysis by including 18 
sustainability metrics, in particular impact of changes in mobility patterns on fuel consumption 19 
and greenhouse gases, is another potential way to improve on the work presented. 20 
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