
41000: Business Statistics

Vadim Sokolov

Chicago Booth

Autumn 2021

1 / 132



Getting Started

https://vsokolov.org/courses/41000/

I General Expectations

1. Read the notes/Practice

2. Be on schedule

3. Add R to your friend list!
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https://vsokolov.org/courses/41000/


Course Expectations

Midterm: 35% T/F and three long questions. Cheat Sheet allowed.

Final Project: 35% 50% on Writing/Presentation skills 50% on Modeling.

Homework: 30% Bi-weekly Assignments. Groups of 3-4. Otherwise it’s no fun!

Grading is X+,X,X−.

Fixed Grading Curve: 3.33.
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Course Overview

Weeks 1&2 Probability & Bayes OpenIntro Statistics, Chapters 2&3

Weeks 3&4 Data Analytics Chapters 4,5&6

Week 5 Modeling and Linear Regression Chapters 6&7

Week 6 Midterm

Week 7 Logistic Regression

Week 8 Predictive Analytics

Week 9 Artificial Intelligence (AI)

Week 10 Deep Learning (DL)
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https:///www.openintro.org/stat/textbook.php


Course Book: OpenIntro Statistics
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https://www.dropbox.com/s/2g08xr3s54qqzq9/openintro-statistics.pdf?dl=1


AIQ: People & Robots Smarter Together

Additional Reading!!
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Seven AI-IQ Stories

I Abraham Wald (October 31, 1902 – December 13, 1950)

I Henrietta Leavitt (July 4, 1868 – December 12, 1921)

I John Craven (August 16, 1940 –)

I Grace Hopper (December 9, 1906 – January 1, 1992)

I Isaac Newton (January 4,1643 – March 31, 1727)

I Florence Nightingale (May 12, 1820 – August 13, 1910)

I Joe DiMaggio (November 25, 1914 – March 8, 1999)
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https://en.wikipedia.org/wiki/Abraham_Wald
https://en.wikipedia.org/wiki/Henrietta_Swan_Leavitt
https://en.wikipedia.org/wiki/John_Craven
https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Florence_Nightingale
https://en.wikipedia.org/wiki/Joe_DiMaggio


Business Statistics: 41000

Section 1: Introduction

Probability and Bayes

Vadim Sokolov

Suggested Reading

OpenIntro Statistics, Chapters 2&3
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This Section

How to deal with uncertainty?

I Random Variables and Probability Distributions

I Joint and Conditional (Happy/Rich), Independence (Sally Clark),

I Expectation and Variance (Bookies vs Betters, Tortoise and Hare)

I Binomial Distribution (Patriot Coin Toss), Normal distribution (Crash of 1987)

I Decision Making under uncertainty (Marriage Problem and Probability and

Decision Trees)

I Bayes Rule (Practice Hard 6= Play in NBA)
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Review of Basic Probability Concepts

Probability lets us talk efficiently about things that we are uncertain about.

I What will Amazon’s sales be next quarter?

I What will the return be on my stocks next year?

I How often will users click on a particular Google ad?

All these involve estimating or predicting unknowns!!
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Random Variables

Random Variables are numbers that we are not sure about. There’s a list of

potential outcomes. We assign probabilities to each outcome.

Example: Suppose that we are about to toss two coins. Let X denote the number

of heads. We call X the random variable that stands for the potential outcome.
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Probability

Probability is a language designed to help us communicate about uncertainty. We

assign a number between 0 and 1 measuring how likely that event is to occur It’s

immensely useful, and there’s only a few basic rules.

1. If an event A is certain to occur, it has probability 1, denoted P(A) = 1

2. Either an event A occurs or it does not.

P(A) = 1 − P(not A)

3. If two events are mutually exclusive (both cannot occur simultaneously) then

P(A or B) = P(A) + P(B)

4. Joint probability, when events are independent

P(A and B) = P(A)P(B)
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Probability Distribution

We describe the behavior of random variables with a Probability Distribution

Example: Suppose we are about to toss two coins. Let X denote the number of

heads.

X =


0 with prob. 1/4

1 with prob. 1/2

2 with prob. 1/4

X is called a Discrete Random Variable

Question: What is P(X = 0)? How about P(X ≥ 1)?

13 / 132



Pete Rose Hitting Streak

Pete Rose of the Cincinnati Reds set a National League record of hitting safely in

44 consecutive games ...

I Rose was a 300 hitter. Assume he comes to bat 4 times each game.

I Each at bat is assumed to be independent, i.e., the current at bat doesn’t

affect the outcome of the next.

What probability might reasonably be associated with that hitting streak?

Joe DiMaggio’s record is 56! His batting average was .325
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Pete Rose Hitting Streak

Let Ai denote the event that “Rose hits safely in the ith game”

P(Rose Hits Safely in 44 consecutive games) =

P(A1 and A2 . . . and A44) = P(A1)P(A2) . . . P(A44)

We now need to find P(Ai ) . . . where P(Ai ) = 1 − P(not Ai )

P(A1) = 1 − P(not A1)

= 1 − P(Rose makes 4 outs)

= 1 − (0.7)4 = 0.76

So for the winning streak we have (0.76)44 = 0.0000057 !!!
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Pete Rose Hitting Streak

There are three basic inferences

I This means that the odds for a particular player as good as Pete Rose

starting a hitting streak today are 175, 470 to 1

I Doesn’t mean that the run of 44 won’t be beaten by some player at some

time: the Law of Very Large Numbers

I Joe DiMaggio’s record is 56!!!! It’s going to be hard to beat. We have

(0.792)56 = 2.13× 10−6 or 455,962 to 1
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New England Patriots and Coin Tossing

Patriots won 19 out of 25 coin tosses in 2014-15 season! What is the probability

of that happening?

I Let X be a random variable equal to 1 if the Patriots win and 0 otherwise. It’s

reasonable to assume P(X = 1) = 1
2

I There are 25 choose 19 or 177, 100 different sequences of 25 games where

the Patriots win 19. Each potential sequence has probability 0.525 why?

Pr (Patriots win 19 out 25 tosses) = 177, 100× 0.525 = 0.005
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Conditional, Joint and Marginal Distributions

Use probability to describe outcomes involving more than one variable at a time.

Need to be able to measure what we think will happen to one variable relative to

another

In general the notation is ...

I P(X = x , Y = y) is the joint probability that X = x and Y = y

I P(X = x | Y = y) is the conditional probability that X equals x given Y = y

I P(X = x) is the marginal probability of X = x
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Conditional, Joint and Marginal Distributions

Relationship between the joint and conditional ...

P(x , y) = P(x)P(y | x)

= P(y)P(x | y)

Relationship between the joint and marginal ...

P(x) =
∑

y

P(x , y)

P(y) =
∑

x

P(x , y)
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Example:

“happiness index” as a function of salary.

Happiness (Y )

Salary (X ) 0 (low) 1 (medium) 2 (high)

low 0 0.03 0.12 0.07

medium 1 0.02 0.13 0.11

high 2 0.01 0.13 0.14

very high 3 0.01 0.09 0.14

Is P(Y = 2 | X = 3) > P(Y = 2)?

20 / 132



Independence

Two random variable X and Y are independent if

P(Y = y | X = x) = P(Y = y)

for all possible x and y values. Knowing X = x tells you nothing about Y !

Example: Tossing a coin twice. What’s the probability of getting H in the second

toss given we saw a T in the first one?
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Bayes Rule

The computation of P(x | y) from P(x) and P(y | x) is called Bayes theorem ...

P(x | y) =
P(y , x)
P(y)

=
P(y , x)∑
x P(y , x)

=
P(y | x)P(x)∑
x P(y | x)P(x)

This shows now the conditional distribution is related to the joint and marginal

distributions.

You’ll be given all the quantities on the r.h.s.
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Bayes Rule

Key fact: P(x | y) is generally different from P(y | x)!

Example: Most people would agree

Pr (Practice hard | Play in NBA) ≈ 1

Pr (Play in NBA | Practice hard) ≈ 0

The main reason for the difference is that P(Play in NBA) ≈ 0.
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Sally Clark Case: Independence Plays a Huge Role

Famous London crime case: Both babies died of SIDS

p(S1, S2) = p(S1)p(S2) = (1/8500)(1/8500) = (1/73, 000, 000)

The odds ratio for double SIDS to double homicide at between 4.5:1 and 9:1

Under Bayes

p(S1, S2) = p(S1)p(S2 | S1) = (1/8500)(1/100) = (1/850, 000)

The 1/100 comes from taking into account genetics.

That’s a big difference! Under dependence assumption she’d be acquitted.
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Random Variables: Expectation E(X )

Example

I The expected value of a random variable is simply a weighted average of the

possible values X can assume.

I The weights are the probabilities of occurrence of those values.

E(X ) =
∑

x

xP(X = x)

I With n equally likely outcomes with values x1, . . . , xn, P(X = xi ) = 1/n

E(X ) =
x1 + x2 + . . . + xn

n
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Roulette Expectation

I European Odds: 36 numbers (red/black) + zero

I You bet $1 on 11 Black (pays 35 to 1)

I X is the return on this bet

E(X ) =
1

37
× 36 +

36
37
× 0 = 0.97

I If you bet $1 on Black (pays 1 to 1)

E(X ) =
18
37
× 2 +

19
37
× 0 = 0.97

Casino is guaranteed to make money in the long run!
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Standard Deviation sd(X ) and Variance Var(X )

The variance is calculated as

Var(X ) = E
(
(X − E(X ))2

)
A simpler calculation is Var(X ) = E(X2)− E(X )2.

The standard deviation is the square-root of variance.

sd(X ) =
√

Var(X )
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Roulette Variance

I European Odds: 36 numbers (red/black) + zero

I You bet $1 on 11 Black (pays 35 to 1)

I X is the return on this bet

Var(X ) =
1
37
× (36 − 0.97)2 +

36
37
× (0 − 0.97)2 = 34

I If you bet $1 on Black (pays 1 to 1)

Var(X ) =
18
37
× (2 − 0.97)2 +

19
37
× (0 − 0.97)2 = 1

If your goal is to spend as much time as possible in the casino (free drinks): place

small bets on black/red
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Example: E(X ) and Var(X )

Tortoise and Hare are selling cars.

Probability distributions, means and variances for X , the number of cars sold

X Mean Variance sd

cars sold 0 1 2 3 E(X ) Var(X )
√

Var(X )

Tortoise 0 0.5 0.5 0 1.5 0.25 0.5

Hare 0.5 0 0 0.5 1.5 2.25 1.5
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Expectation and Variance

Let’s do Tortoise expectations and variances

I The Tortoise

E(T ) = (1/2)(1) + (1/2)(2) = 1.5

Var(T ) = E(T 2)− E(T )2

= (1/2)(1)2 + (1/2)(2)2 − (1.5)2 = 0.25

I Now the Hare’s

E(H) = (1/2)(0) + (1/2)(3) = 1.5

Var(H) = (1/2)(0)2 + (1/2)(3)2 − (1.5)2 = 2.25
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Expectation and Variance

What do these tell us above the long run behavior?

I Tortoise and Hare have the same expected number of cars sold.

I Tortoise is more predictable than Hare.

He has a smaller variance

The standard deviations
√

Var(X ) are 0.5 and 1.5, respectively

I Given two equal means, you always want to pick the lower variance.
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Covariance

Suppose that we have two random variables X and Y

We need to measure whether they move together or in opposite directions

The Covariance is defined by

Cov(X , Y ) = E ((X − E(X ))(Y − E(Y )))

In terms of probability distributions, we need to calculate

Cov(X , Y ) =
∑
x ,y

(x − E(X ))(y − E(Y ))P(x , y)
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Lets look at Covariance on Markets
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Correlation

The Correlation is defined by

Corr(X , Y ) =
Cov(X , Y )

sd(X )sd(Y )

I What are the units of Corr(X , Y )?

They don’t depend on the units of X or Y !

I −1 ≤ Corr(X , Y ) ≤ 1

If Cov(Apple Sales, Economy) = 5, sd(Apple Sales) = 2 and

sd(Economy) = 3.5, then there’s a 71.4% correlation

Corr(Apple Sales, Economy) =
5

2× 3.5
=

5
7
= 0.714
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Linear Combinations of Random Variables

Two key properties:

Let a, b be given constants

Example

I Expectations and Variances

E(aX + bY ) = aE(X ) + bE(Y )

Var(aX + bY ) = a2Var(X ) + b2Var(Y ) + 2abCov(X , Y )

where Cov(X , Y ) is the covariance between random variables.
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Tortoise and Hare

What about Tortoise and Hare?

We need to know Cov(Tortoise, Hare).

Let’s take Cov(T , H) = −1 and see what happens

Suppose a = 1
2 , b = 1

2

Expectation and Variance

E
(

1
2

T +
1
2

H
)
=

1
2

E(T ) +
1
2

E(H) =
1
2
× 1.5 +

1
2
× 1.5 = 1.5

Var
(

1
2

T +
1
2

H
)
=

1
4

0.25 +
1
4

2.25 − 2
1
2

1
2
= 0.625 − 0.5 = 0.125

Much lower!
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Building a Portfolio of ETFs

What’s the appropriate investment decision for you?

ETF=Exchange Traded Fund. There’s many funds to choose from!

You have to decide which ones? and how much?

We’ll see how the expected return (mean) and risk (volatility) math works for you

...

There’s no free lunch! You’ll have to take some risk ...
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Building a Portfolio of ETFs: Assignment 1

Vanguard has a suite of ETFs. Here’s a couple of combinations to choose from

1. Stocks and Bonds? SPY and TLT

2. Growth and Value? VUG and VTV

3. European or China? VGK and FXI

Let P = aX + bY be your portfolio. What a, b do you choose?
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Growth vs Value
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Dummy Variables

A random variable that assigns a 1 when some event occurs and a 0 otherwise is

called a dummy variable. It is called this because the number 1 “stands in” for

the event.

Event Value Probability

Head 1 1/2

Tail 0 1/2

As before, we assign each outcome a probability, which together constitute the

distribution of the random variable. It describes how the total probability mass is

distributed across the various outcomes.
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Binomial Distribution

Bernoulli Trials: A sequence of repeated experiments are Bernoulli trials if:

1. The result of each trial is either a success or failure.

2. The probability p of a success is the same for all trials.

3. The trials are independent.

If X is the number of successes it is a Binomial Random Variable.
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Binomial Distribution

We calculate probabilities using:

P(X = x) =
(

n
x

)
px (1 − p)n−x

(n
x) counts the number of ways of getting

x successes in n trials.

I The formula for (n
x) is(

n
x

)
=

n!
x !(n − x)!

where n! =

n× (n − 1)× (n − 2)× ...× 2× 1.

Binomial Mass Function

0 2 4 6 8 10 12 14 16 18 200.
00

0.
05

0.
10

0.
15

In R: dbinom(z, n, p) and

rbinom(1000, n, p)
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Binomial Distribution

The Mean and Variance of the Binomial are:

Binomial Distribution Parameters

Expected value µ = E(X ) = np

Variance σ2 = Var(X ) = np(1 − p)
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Binomial: Example

Assuming the Joe DiMaggio’s batting average is 0.325 per at-bat and his hits are

independent. What is the probability of getting more than 2 hits in 4 at-bats.

P(hits > 2) = P(hits = 3) + P(hits = 4)

=

(
4
3

)
p3(1 − p) +

(
4
4

)
p4

= 10.4%
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Bernoulli Process

Let X represent either success (X = 1) or failure (X = 0)

I A Bernoulli process is a binary outcome with

P(X = 1) = p and P(X = 0) = 1 − p

I We assume that trials are independent.

The probability of two successes in a row is

P(X1 = 1, X2 = 1) = P(X1 = 1)P(X2 = 1)

= p · p

= p2

Binomial distribution counts the successes of a Bernoulli process.

45 / 132



EPL Odds
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EPL 2017 Data

We have a historical set of data on scores

home team results visit team

Chelsea 2 1 West Ham

Chelsea 5 1 Sunderland

Watford 1 2 Chelsea

Chelsea 3 0 Burnley

. . .

Tomorrow Manchester United (MU) is playing Hall U. I want to place a bet.

How can I predict the outcome of this game?
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Poisson Distribution

The Poisson distribution counts the occurrence of events

Given the rate λ we calculate probabilities as follows

P(X = x) =
e−λλx

x !
where x = 0, 1, 2, 3, . . .

The Poisson Mean and Variance are:

Poisson Distribution Parameters

Expected value µ = E(X ) = λ

Variance σ2 = Var(X ) = λ

λ is the rate of occurrence of an event.

48 / 132



EPL MU

I can build a model assuming goals follow Poisson distribution.

I calculate λ by taking an average.
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Our Poisson model fits the empirical data!!
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English Premier League: EPL

Calculate Odds for the possible scores in a match?

0 − 0, 1 − 0, 0 − 1, 1 − 1, 2 − 0, . . .

Let

X = Goals scored by Hall U

Y = Goals scored by MU

What’s the odds of a MU winning? P (X < Y ) Odds of a draw? P (X = Y )

x = rpois(100,0.6)
y = rpois(100,1.4)
sum(x<y)/100 # Team 2 wins
sum(x==y)/100 # Draw
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EPL: Attack and Defence Strength

Each team gets an “attack” strength and “defence” weakness rating Adjust home

and away average goal estimates
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EPL: Hull vs ManU

Poisson Distribution

ManU Average away goals = 1.47. Prediction: 1.47× 1.46× 1.37 = 2.95

Average × Attack strength × Defense weakness

Hull Average home goals = 1.47. Prediction: 1.47× 0.85× 0.52 = 0.65.

Simulation

Team Expected Goals 0 1 2 3 4 5

Man U 2.95 7 22 26 12 11 13

Hull City 0.65 49 41 10 0 0 0
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EPL Predictions

A model is only as good as its predictions

I In our simulation Man U wins 88 games out of 100, we should bet when

odds ratio is below 88 to 100.

I Most likely outcome is 0-3 (12 games out of 100)

I The actual outcome was 0-1 (they played on August 27, 2016)

I In out simulation 0-1 was the fourth most probable outcome (9 games out of

100)
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Bookies vs Betters: The Battle of Probabilistic Models

Source: The Secret Betting Strategy That Beats Online Bookmakers
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Bookies vs Betters: The Battle of Probabilistic Models

I Bookies set odds that reflect their best guess on probabilities of a win, draw,

or loss. Plus their own margin

I Bookies have risk aversion bias. When many people bet for an underdog

(more popular team)

I Bookies hedge their bets by offering more favorable odds to the opposed

team

I Simple algorithm: calculate average odds across many bookies and find

outliers with large deviation from the mean
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Continuous Random Variables

Suppose we are trying to predict tomorrow’s return on the S&P500...

There’s a number of questions that come to mind

I What is the random variable of interest?

I How can we describe our uncertainty about tomorrow’s outcome?

I Instead of listing all possible values we’ll work with intervals instead.

The probability of an interval is defined by the area under the probability

density function.

They are continuous (as opposed to discrete) random variables
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Normal Distribution

Z is a standard normal random variable

I The standard Normal has mean 0 and has a variance 1

Z ∼ N(0, 1)

I We have the probability statements

P (−1 < Z < 1) = 0.68

P (−1.96 < Z < 1.96) = 0.95

qnorm and pnorm We can simulate 1000 draws using rnorm(1000,0,1)
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Normal Distribution

By changing the mean parameter µ, we change the center of the bell curve
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Normal Distribution

By changing the variance parameter σ2, we change the “fatness” of the bell curve
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Normal Distribution

Chicago Wind Speed (2007-2014) data on a log scale seem to be well described

by the Normal distribution
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pnorm and qnorm

We can find probabilities and quintiles in R. Here are the important values

>pnorm(2.58)
[1] 0.9950
>pnorm(1.96)
[1] 0.9750
>pnorm(1.64)
[1] 0.9499

qnorm is the inverse of pnorm. Simulation rnorm.

N=1000, x=rnorm(N,0,1), p=sum(x<1.96)/N
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Normal Distribution with General Mean and Variance

Here are two useful facts: If X ∼ N(µ, σ2), then

P(µ − 2.58σ < X < µ + 2.58σ) = 0.99

P(µ − 1.96σ < X < µ + 1.96σ) = 0.95 .

I The chance that X will be within 2.58σ of its mean is 99%, and the chance

that it will be within 2σ of its mean is about 95%.
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The Normal Distribution

Our probability model is written X ∼ N(µ, σ2) µ is the mean, σ2 is the variance

I Standardization if X ∼ N(µ, σ2) then

Z =
X − µ

σ
∼ N(0, 1)

I µ : the center of the distribution σ : how spread out the data are

95% probability X is inside µ± 1.96σ.
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In R and Excel

In R: For a lower tail area, use pnorm(z, mean, sd)

Here z is where you want to compute the tail area, while “mean"

and “sd” are the mean and standard deviation of the normal

distribution, respectively.

To compute an upper tail area, use pnorm(z, mean, sd,

lower.tail=F)

In Excel: To compute a lower tail area, first click on a cell. In the formula

bar, type NORMDIST(z,mean,sd,TRUE).

To find the z value corresponding to a specified lower tail area p,

use the expression NORMINV(p,mean,sd) in the formula par,

where p is the lower tail area.
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Pictorially

Examples of upper and lower tail areas. The lower tail area of 0.1 is at

z = −1.28. The upper tail area of 0.05 is at z = 1.64
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Example: The Crash

How extreme was the 1987 crash of −21.76%?

1. Prior to the October, 1987 crash SP500 monthly returns were 1.2% with a

risk/volatility of 4.3%

X ∼ N
(

0.012, 0.0432
)

Standardize:

Z =
X − µ

σ
=

X − 0.012
0.043

∼ N(0, 1)

2. Calculate the observed Z :

Z =
−0.2176 − 0.012

0.043
= −5.27

That’s a 5-sigma event!
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Example: The Crash

We assumed returns follow normal distribution. Using an inaccurate model can

lead to inaccurate results.
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Normal as Approximaiton to Binomial

A real estate firm in Florida offers a free trip to Florida for potential customers.

Experience has shown that of the people who accept the free trip, 5% decide to

buy a property. If the firm brings 1000 people, what is the probability that at least

125 will decide to buy a property?

In order to find the probability that at least 125 decide to buy, the binomial

distribution would require calculating the probabilities for 125-1000. Instead, we

use the normal approximation for the binomial.

µ = np = 50.

σ =
√

np(1 − p) =
√

1000× .05× .95 =
√

47.5 = 6.89

Calculating the Z-score for 125: Z = 125−50
6.89 = 10.9. and P(Z ≥ 10.9) = 0.
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Probability and Making Decision

The Secretary Problem: also called the matching or marriage problem

I You will see items (spouses) from a distribution of types F (x).

You clearly would like to pick the maximum.

You see these chronologically.

After you decide no, you can’t go back and select it.

I Strategy: wait for the length of time

1
e
=

1
2.718281828

= 0.3678

Select after you observe an item greater than the current best.
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A Simple Example

Say I have a budget to consider 10 candidate, and they have the following scores

(which I do not know)

1 7 4 5 3 8 10 3 0 11

I decide to screen 3 candidates before making decision

I My best candidate from the screening pool is 7

I Next is 5 –> dump

I Next is 3 –> dump

I Next is 8 –> accept
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Probability and Decision

What’s your best strategy?

I Turns out its insensitive to the choice of distribution.

I Although there is the random sample i.i.d. assumption lurking.

I You’ll not doubt get married between 18 and 60.

Waiting 1
e along this sequence gets you to the age 32!

Then, pick the next best person!

71 / 132



Business Statistics: 41000

Bayes Rules

Vadim Sokolov

The University of Chicago Booth School of Business

http://vsokolov.org/courses/41000/
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Bayes and AI

Many applications in social media and business ...

1. Google Translate: 3 billion words a day

2. Amazon Alexa: Speech Recognition

3. Driverless Car: Waymo

Shannon’s autonomous mouse: Theseus

Bayes solves these problems!!
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Bayes and AI

What Does “AI" Really Mean? Think of an algorithm.

Two distinguishing features of AI algorithms:

1. Algorithms typically deal with probabilities rather than certainties.

2. There’s the question of how these algorithms “know" what instructions to

follow.
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Abraham Wald

How Abraham Wald improved aircraft survivability. Raw Reports from the Field

Type of damage suffered Returned (316 total) Shot down (60 total)

Engine 29 ?

Cockpit 36 ?

Fuselage 105 ?

None 146 0

This fact would allow Wald to estimate:

P(damage on fuselage | returns safely) = 105/316 ≈ 32%

You need the inverse probability :
P(returns safely | damage on fuselage)

Completely different!
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Abraham Wald

Wald invented a method to implement the missing data, which is called by data

scientist as “imputation". Wald Invented A Method for Reconstructing the Full

Table

Type of damage suffered Returned (316 total) Shot down (60 total)

Engine 29 31

Cockpit 36 21

Fuselage 105 8

None 146 0

Then Wald got:

P(returns safely | damage on fuselage) =
105

105 + 8
≈ 93%

P(returns safely | damage on engine) =
29

29 + 31
≈ 48%
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“Personalization" = “Conditional Probability"

Conditional probability is how AI systems express judgments in a way that

reflects their partial knowledge.

Personalization runs on conditional probabilities, all of which must be estimated

from massive data sets in which you are the conditioning event.

Many Business Applications!! Suggestions vs Search, ....
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How does Netflix Give Recommendations?

Will a subscriber like Saving Private Ryan, given that he or she liked the HBO

series Band of Brothers?

Both are epic dramas about the Normandy invasion and its aftermath.

100 people in your database, and every one of them has seen both films.

Their viewing histories come in the form of a big “ratings matrix".

Liked Band of Brothers Didn’t like it

Liked Saving Private Ryan 56 subscribers 6 subscribers

Didn’t like it 14 subscribers 24 subscribers

P(likes Saving Private Ryan | likes Band of Brothers) =
56

56 + 14
= 80%
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How does Netflix Give Recommendations?

But real problem is much more complicated:

1. Scale. It has 100 million subscribers and ratings data on more than 10,000

shows. The ratings matrix has more than a trillion possible entries.

2. "Missingness". Most subscribers haven’t watched most films. Moreover,

missingness pattern is informative.

3. Combinatorial explosion. In a database with 10,000 films, no one else’s

history is exactly the same as yours.

The solution to all three issues is careful modeling.
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How does Netflix Give Recommendations?

The fundamental equation is:

Predicted Rating = Overall Average+Film Offset+User Offset+User-Film Interaction

These three terms provide a baseline for a given user/film pair:

I The overall average rating across all films is 3.7.

I Every film has its own offset. Popular movies have positive offsets.

I Every user has an offset. Some users are more or less critical than average.
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Netflix

The User-Film Interaction is calculated based on a person’s ratings of similar

films exhibit patterns because those ratings are all associated with a latent

feature of that person.

There’s not just one latent feature to describe Netflix subscribers, but dozens or

even hundreds. There’s a “British murder mystery" feature, a “gritty

character-driven crime drama" feature, a “cooking show" feature, a “hipster

comedy films" feature, ...
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The Hidden Features Tell the Story

These latent features are the magic elixir of the digital economy–a special brew of

data, algorithms, and human insight that represents the most perfect tool ever

conceived for targeted marketing.

Your precise combination of latent features–your tiny little corner of a giant

multidimensional Euclidean space–makes you a demographic of one.

Netflix spent $130 milion for 10 episodes on The Crown. Other network

television: $400 million commissioning 113 pilots, of which 13 shows made it to a

second season.
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Bayes’s Rule in Medical Diagnostics

Alice is a 40-year-old women, what is the chance that she really has breast

cancer when she gets positive mammogram result, given the conditions:

1. The prevalence of breast cancer among people like Alice is 1%.

2. The test has an 80% detection rate.

3. The test has a 10% false-positive rate.

The posterior probability

P(cancer | positive mammogram)?
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Of 1000 cases:

I 108 positive mammograms.

8 are true positives. The

remaining 100 are false

positives.

I 892 negative mammograms.

2 are false negatives. The

other 890 are true

negatives.

Of 1000 cases:

I 108 positive mammograms. 8 are

true positives. The remaining 100

are false positives.

I 892 negative mammograms. 2 are

false negatives. The other 890 are

true negatives.
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Bayes Rule
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Calculation of Posterior Probability

P(cancer | positive mammogram) =
8

108
≈ 7.4%

Calculation of Posterior Probability

P(cancer|positive mammogram) =
8

108
⇡ 7.4%

Most women who test positive on a mammogram are healthy, because the vast

majority of women who receive mammograms in the first place are healthy.

Most women who test positive on a mammogram are healthy, because the vast

majority of women who receive mammograms in the first place are healthy.
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The Reverend and the Submarine (Thomas Bayes & John Craven)

How did John Craven found a lost submarine from 140 square miles of ocean

floor?

How do self-driving car find themselves and dodge bicycle, snow, and kangaroo?

How large is the probability of actually having breast cancer with a positive

mammogram result?

– Bayes’s Rule P(H | D) = P(H)·P(D|H)
P(D)

– SLAM: Simultaneous Localization And Mapping
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The Story of Scorpion

The Scorpion is famous because one day, in 1968, it went missing, somewhere

along a stretch of open ocean spanning thousands of miles. Despite the long

odds, navy officials threw everything they had into the search.

To lead the search, the Pentagon turned to Dr. John Craven. To sort through this

thicket of unknowns, Craven turned to his preferred strategy: Bayesian search.

This methodology had been pioneered during World War II, when the Allies used

it to help locate German U-boats.
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Bayesian Search

I Combine information from multiple sources to identify the location

I Air France Flight 447

I Brazilian navy has searched for 2 years. US Navy found in 2 weeks using

Bayesian search

I MH370: Bayesian Methods in the Search for MH370 by Davey et.al.
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Four essential steps of Bayesian search

1. Create a map of prior probabilities over your search grid. Two sources of

information, the presearch opinions of various experts and the capability of

search instruments, are combined into prior.

2. Search the location of highest prior probability, for example, square C5.

3. If find nothing, revise your beliefs. Reduce the probability around square C5

and bump up the probability in the other regions accordingly.

4. Iterate steps 2 and 3.

Bayes’s rule: prior belief + facts = revised belief.
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Bayes Rule

Disease Testing example .... Let D = 1 indicate you have a disease Let T = 1

indicate that you test positive for it

D = 1

D = 0

T = 1

T = 1

T = 0

T = 00.02

0.98
0.99

0.01

0.05

0.95

If you get a positive result, you are really interested in the question:

Given that you tested positive, what is the chance you have the disease?
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Bayes Rule

We have a joint probability table

D

0 1

T 0 0.9702 0.001

1 0.0098 0.019

Bayes Probability

p (D = 1 | T = 1) =
0.019

(0.019 + 0.0098)
= 0.66

92 / 132



Bayes Rule

Let’s think about this intuitively ... imagine you are about to test 100, 000 people.

I We assume that 2, 000 of those have the disease.

I We also expect that 1% of the disease-free people to test positive, i.e., 980

95% of the sick people to test positive. i.e. 1900. In total, we expect 2, 880

positive tests.

I Now choose one of those people at random ... what is the probability that

he/she has the disease?

p (D = 1 | T = 1) =
1, 900
2, 880

= 0.66

We get the same answer!!
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Sensitivity and Specificity

Two errors: An infected person may test negative, a well person tests positive.

Sensitivity (or power) = true positive rate (or recall) % sick people who are

correctly identified P(T | D).

In a perfect world, we’d like P(T̄ | D) ≈ 0

Specificity = true negative rate % of negatives correctly identified as such

P(T̄ | D̄).

I False negative = 1 - sensitivity, β where β is the type I error

I False positive rate = 1 − specificity, α = type II error

We want the probability: P(D | T )
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Confusion Matrix

We can use accuracy rate:

accuracy =
# of Correct answers

n

or its dual, error rate

error rate = 1 − accuracy

You remember, we haveP two types of errors. We can use confusion matrix to

quantify those

Predicted: YES Predicted: NO

Actual: YES TPR FNR

Actual: NO FPR TNR

True positive rate (TPR) is the sensitivity and false positive rate (FPR) is the

specificity of our predictive model
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Bayes Classifier

Output Y and input X :

Y : image of a cat X : identify “cat”

Silicon Valley: Season 4: Not Hotdog

What’s our best decision?

Pick Ŷ as the most likely category given that X = x , namely

Ŷ = argmaxY p(Y = y | X = x)

I need the probability table P(X = x , Y = y) and marginal P(X = x).
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https://www.youtube.com/watch?v=ACmydtFDTGs


Test Marketing a New Product

Basic Problem:

I Your company is developing a new product and will be test marketing to

better gauge the sales of the new product.

I Based on positive, neutral or negative reactions, what are the probability of

high and low sales?

NetFlix Bayes and AI

97 / 132

https://venturebeat.com/2017/10/13/netflix-went-up-a-personalization-hill-and-came-down-an-ai-mountain/


Test Marketing

Suppose you are given the following information

I New products introduced in the marketplace have high sales 8% of the time

and low sales 92% of the time.

I A marketing test has the following accuracies:

If sales are high, then consumer test reaction is positive 70%, neutral 25%

and negative 5%.

If sales are low, then consumer test reaction is positive 15%, neutral 35%

and negative 50%.
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Test Marketing

Step 1: Set-up your notation. Let

H = high sales L = low sales

Pos = positive Neu = Neutral Neg = Negative

Step 2: List the known conditional probabilities For the marketing test we have

P(Pos | H) = 0.70, P(Neu | H) = 0.25, P(Neg | H) = 0.05

P(Pos | L) = 0.15, P(Neu | L) = 0.35, P(Neg | L) = 0.50

Finally, the base rates are P(H) = 0.08 and P(L) = 0.92
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Test Marketing

Step 3: Describe the posterior probabilities that are required:

P(H | Pos)

The probability of high sales given a positive marketing test. Compute the

probability of a positive test

P(Pos) = P(Pos | H)P(H) + P(Pos | L)P(L)

= 0.70× 0.08 + 0.15× 0.92 = 0.194
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Test Marketing

Now use Bayes Rule

P(H | Pos) =
P(Pos | H)P(H)

P(Pos)

=
0.70× 0.08

0.194
= 0.288

Hence 28.8% you’ll have high sales in the market.

We should interpret this relative to our initial probability of only 8%.
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Two Headed Coin

Large jar containing 1024 fair coins and one two-headed coin.

I You pick one at random and flip it 10 times and get all heads.

I What’s the probability that the coin is the two-headed coin?

1
1025 probability of initially picking the two headed coin. 1

1024 chance of getting 10

heads in a row from a fair coin Therefore, it’s a 50/50 bet.
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Two Headed Coin

Let E be the event that you get 10 Heads in a row

P (two headed | E) =
P (E | two headed)P (two headed)

P (E | fair)P (fair) + P (E | two headed)P (two headed)

Therefore, the posterior probability

P (two headed | E) =
1× 1

1025
1

1024 × 1024
1025 + 1× 1

1025

= 0.50
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Apple Watch Series 4 ECG and Bayes’ Theorem

The Apple Watch Series 4 can perform a single-lead ECG and detect atrial

fibrillation. The software can correctly identify 98% of cases of atrial fibrillation

(true positives) and 99% of cases of non-atrial fibrillation (true negatives).

However, what is the probability of a person having atrial fibrillation when atrial

fibrillation is identified by the Apple Watch Series 4?

Bayes’ Theorem:

P(A | B) =
P(B | A)P(A)

P(B)
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https://ellisvalentiner.com/post/apple-watch-series-4-ecg-and-bayes-theorem/


Apple Watch

Predicted atrial fibrillation no atrial fibrillation

atrial fibrillation 1960 980

no atrial fibrillation 40 97020

0.6667 =
0.98 · 0.02

0.0294

The conditional probability of having atrial fibrillation when the Apple Watch

Series 4 detects atrial fibrillation is about 67%.
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The Game Show Problem: Assignment 1

Monte Hall Let’s make a Deal.

You pick a door. Monty then opens one of the other two doors, revealing a goat.

Monty can’t open your door or show you a car

You have the choice of switching doors.

Is it advantageous to switch?

Assume you pick door A at random. Then P(A) = (1/3).

You need to figure out P(A | MB) after Monte reveals door B is a goat.
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Decision Trees

A

B

D

E

F

G

H

� (�)

� (�)

� (� ∣ �)

� (� ∣ �)

� (� ∣ �)

� (� ∣ �)

� (� ∣ �)

� (�) + � (�) = 1 � (� ∣ �) +  � (� ∣ �) +  � (� ∣ �)  = 1         � (� ∣ �) +  � (� ∣ �)  = 1
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Catastrophe Modeling

You live in a house that is somewhat prone to mud slides.

I Each rainy season there is a 1% chance of a mud slide occurring.

I You estimate that a mud slide would do $1 million in damage.

I You have the option of building a retaining wall that would help reduce the

chance of a devastating mud slide.

The wall costs $40,000 to build, and if the slide occurs, the wall will hold with

a 95% probability.

I You also have the option of a Geologist’s opinion.

Should you build the wall? Should you use the Geologist’s Test and Bayes Rule?
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Decision Tree

Let’s formally solve this as follows:

I Build a decision tree.

I The tree will list the probabilities at each node. It will also list any costs there

are you going down a particular branch.

I Finally, it will list the expected cost of going down each branch, so we can

see which one has the better risk/reward characteristics.

There’s also the possibility of a further test to see if the wall will hold.
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Testing

Let’s include the testing option

I You also have the option of having a test done to determine whether or not a

slide will occur in your location.

I The test costs $3000 and has the following accuracies.

P(T | Slide) = 0.90 and P(T̄ | No Slide) = 0.85

If you choose the test, then should you build the wall?
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Bayes Rule

Bayes Rule is as follows:

I The initial prior probabilities are

P(Slide) = 0.01 and P(No Slide) = 0.99

I Therefore

P(T ) = P(T | Slide)P(Slide) + P(T | No Slide)P(No Slide)

P(T ) = 0.90× 0.01 + 0.15× 0.99 = 0.1575

We’ll use this to find our optimal course of action.
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Bayes Probabilities

P(Slide | T )

The Bayes probability given a positive test is

P(Slide | T ) =
P(T | Slide)P(Slide)

P(T )

=
0.90× 0.01

0.1575
= 0.0571
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Bayes Probabilities

P(Slide | Not T )

The Bayes probability given a negative test is

P (Slide | T̄ ) =
P(T̄ | Slide)P(Slide)

P(T̄ )

=
0.1× 0.01

0.8425

= 0.001187

Compare this to the initial base rate of a 1% chance of having a mud slide.
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Probability Lose Everything

You build the wall without testing, what’s the probability that you lose everything?

With the given situation, there is one path (or sequence of events and decisions)

that leads to losing everything:

1. Build without testing (given)

2. Slide (0.01)

3. Doesn’t hold (0.05)

P(losing everything | build w/o testing) = 0.01× 0.05 = 0.0005
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Probability Lose Everything

You choose the test, what’s the probability that you’ll lose everything?

There are two paths that lead to losing everything:

1. First Path: There are three things that have to happen to lose everything

Test +ve (P = 0.1575), Build, Slide (P = 0.0571), Doesn’t Hold (P = 0.05)

2. Second Path: Now you lose everything if Test -ve (P = 0.8425), Don’t Build,

Slide given negative (P = 0.001187)
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Conditional Probabilities

For the first path

P(first path) = 0.1575× 0.0571× 0.05 = 0.00045

For the second path

P(second path) = 0.8425× 0.001187 = 0.00101

Hence putting it all together

P(losing everything | testing) = 0.00045 + 0.00101 = 0.00146
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Risk and Reward

Risk-Return Trade-off

Choice Expected Cost Risk P

Don’t Build $10,000 0.01 1 in 100

Build w/o testing $40,500 0.0005 1 in 2000

Test $10,760 0.00146 1 in 700

Expected Cost: Fee + Build + Loss

Expected cost: 3 + 40× 0.1575 + 1000× 0.00146 or $ 10, 760

What do you choose?
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Summary

How to deal with uncertainty?

I Random Variables and Probability Distributions

I Joint and Conditional (Happy/Rich), Independence (Sally Clark),

I Expectation and Variance (Bookies vs Betters, Tortoise and Hare)

I Binomial Distribution (Patriot Coin Toss), Normal distribution (Crash of 1987)

I Decision Making under uncertainty (Marriage Problem and Probability and

Decision Trees)

I Bayes Rule (Practice Hard 6= Play in NBA)
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Probability

I Random events

I Probability Distribution

I Independence

I Conditional Probability

I Decision trees

I Bayes and Decisions

I Bayes Examples

I Distributions

I Normal: (a) (b) (c)

I Binomial (a) (b) (c)
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https://coursera.org/share/c2d2ac5d7ddd2a218f3a7c0738987ef9
https://coursera.org/share/77faba16d02d3a2b0b1884ae68f6f007
https://coursera.org/share/a786541d362227f3b8f1430053dae036
https://coursera.org/share/8afcc4155e731884a0c53d8c526e2632
https://coursera.org/share/5d04188473d1696587ff5335689d2bda
https://coursera.org/share/3544203543e371394297bd37261254c4
https://coursera.org/share/9af4fbed965bbe5adc077ded4b02c869
https://coursera.org/share/9bce846dbfa187bc5075afedbcd43817
https://coursera.org/share/12212d3494c8b17f9f763f2bd1595b98
https://coursera.org/share/9a634dc770b32101eb7926768ea2f0be
https://coursera.org/share/abb3565917273023cd51f5480d036692
https://coursera.org/share/278744e2c07635413584ffd23e23d472
https://coursera.org/share/ea8caff4fd69fe73a001352ef60f7aff


Working with Data

I Data Basics (variables, data tables, numerical vs categorical)

I Observational Studies & Experiments

I Sampling and sources of bias

I Experimental Design

I Scatter plots and histograms

I Mean and mode

I Variance

I log transform
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https://coursera.org/share/e158f6eaa32e12c0d9d3da85796bab49
https://www.coursera.org/lecture/probability-intro/observational-studies-experiments-Qw8iF?utm_source=link&utm_medium=page_share&utm_content=vlp&utm_campaign=top_button
https://www.coursera.org/lecture/probability-intro/sampling-and-sources-of-bias-Y96uT?utm_source=link&utm_medium=page_share&utm_content=vlp&utm_campaign=top_button
https://coursera.org/share/57c926866416c9295b1acdd6bcf1c258
https://coursera.org/share/44d67da7c5523f3b7d434121046c30be
https://coursera.org/share/1b5b9a5bb5031aaff550d53b813c8a30
https://coursera.org/share/6552e7b50574e04be14b9926293596c3
https://coursera.org/share/3a3bfc6acb6a282bd570a81c9fd2516b


Hypothesis Testing

I Another Introduction to Inference

I Hypothesis Testing (for a mean)

I HT (for the mean) examples

I Confidence Interval

I Confidence Interval (for a mean)

I Accuracy vs. Precision7

I Required Sample Size for ME

I CI (for the mean) examples
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https://coursera.org/share/8b63ddb452ec19990e557180c4270f2e
https://coursera.org/share/f5fedbc17d658cf9aa9ecd8ed222ce0e
https://coursera.org/share/246f42198bfe69425d57fc9d73d0db0c
https://www.coursera.org/lecture/inferential-statistics-intro/confidence-interval-for-a-mean-DA30M?utm_source=link&utm_medium=page_share&utm_content=vlp&utm_campaign=top_button
https://coursera.org/share/1b1a6fedc44ff597e8491ab49dd95325
https://coursera.org/share/e84689a6719561afcafa3cd394ffe18b
https://coursera.org/share/0204e0f0bd1c7ebe166b41d52dcad04e


Significance and Errors

I Inference for Other Estimators

I Decision Errors

I Significance vs. Confidence Level

I Statistical vs. Practical Significance
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https://coursera.org/share/8378aaf8a24aec5db6325863124e721a
https://coursera.org/share/34c89b062e795a414ff2d0e189cdb539
https://coursera.org/share/64778cf569d3b6278a740b48cc906dab
https://coursera.org/share/cb07495ec4f821416e4805a0ad74dab5


Comparing means and t-distribution

I Introduction

I t-distribution

I Inference for a mean

I Inference for comparing two independent means

I Inference for comparing two paired means

I Power
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https://coursera.org/share/307d14b7e50f4db38c03ed1df802ed3b
https://coursera.org/share/387ad53f1ece250b4e4b1ac1e0af64ec
https://coursera.org/share/8b1905492382ed0b48cbf60a31867fcd
https://coursera.org/share/3e013d3e2eb9ec237d03b3075ae6d590
https://coursera.org/share/f652cf833ed5fb1cd8851fd75aad27e2
https://coursera.org/share/4eb8cf3e4f6574dde5ce8a2a18e4a968


Comparing proportions

I Introduction

I Sampling Variability and CLT for Proportions

I Confidence Interval for a Proportion

I Hypothesis Test for a Proportion

I Estimating the Difference Between Two Proportions

I ypothesis Test for Comparing Two Proportions

128 / 132

https://coursera.org/share/cd5a964b412f0ad38cb9ac2ed7b4d636
https://coursera.org/share/26d5305d8255f070e50378a420359b27
https://coursera.org/share/bea71008cdac1c1cb782df3c024694f1
https://coursera.org/share/957f370700c13abc6f413bc07efe21b5
https://coursera.org/share/a386281c080cc17fd1cd96aef0c96135
https://coursera.org/share/f450efb34faacf98ede4f73a410ba139


Linear Model

I Introduction

I Correlation

I Residuals

I Least Squares Line

I Prediction and Extrapolation

I Conditions for Linear Regression

I R Squared

I Regression with Categorical Explanatory Variables

I Outliers in Regression

I Inference for Linear Regression
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https://coursera.org/share/40e646b6116d29aff8f4364365d7393b
https://coursera.org/share/18af877b2603be7dfbabdde98a446cf7
https://coursera.org/share/955fedcb58053500b2b6dd3eb778aa82
https://coursera.org/share/4d2176ea6d0681f2d1779099d1fe7960
https://coursera.org/share/9b9c62b7379e9f5c206559a2e45105e4
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https://coursera.org/share/4035478d72c4f07def4741a01d68dc05
https://coursera.org/share/80f75df21e38e75827d73a8179ac723b
https://coursera.org/share/c455fd9eb36186c0d720e2e7aa41c91b


Multiple Linear Model

I Introduction

I Multiple Predictors

I Adjusted R Squared

I Collinearity and Parsimony

I Inference for MLR

I Model Selection

I Diagnostics for MLR

I Interactions
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https://www.coursera.org/lecture/linear-regression-model/introduction-5e9jF?utm_source=link&utm_medium=page_share&utm_content=vlp&utm_campaign=top_button
https://www.coursera.org/lecture/linear-regression-model/multiple-predictors-liFqd?utm_source=link&utm_medium=page_share&utm_content=vlp&utm_campaign=top_button
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https://coursera.org/share/6dd0dad04415dc34ce11acd28e682f0f
https://coursera.org/share/3fb7ee245bc46abc6fc78ffd8fefa53d
https://coursera.org/share/910b5d7609ff7b1dd98a2ee3be0f6c19
https://coursera.org/share/8275f4867d9f8c7bff0698f35ee5de07
https://youtu.be/IFzVxLv0TKQ


Classification

I Overview

I Logistic Regression

I Logistic Regression Details
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https://youtu.be/vVj2itVNku4
https://youtu.be/sqq21-VIa1c
https://youtu.be/31Q5FGRnxt4


Deep Learning

I What is a neural network?

I Supervised Learning with Neural Networks

I Why is Deep Learning taking off?

I Binary Classification

I Logistic Regression
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https://coursera.org/share/5c500f68d0a17831417a69284f8e3a4a
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