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 SUMMARY

 Frequently, when a crime is committed, fibres are left at the scene. This paper examines the modelling
 aspects of evaluating the evidential content of such fibres by using a Bayesian approach. Inferences
 are made via the likelihood ratio, derived from bivariate colour measurements. Modelling the distribu-
 tion of colour within a particular garment is discussed in detail. In addition, a large database allows an
 empirical prior distribution to be incorporated, utilizing kernel density estimation. Data from actual
 casework are analysed.

 Keywords: Bayesian inference; Colour measurements; Forensic science; Kernel density
 estimation; Likelihood ratio; Modelling within-garment variability

 1. Introduction

 1.1. The Problem
 The potential for the use of Bayesian statistical analysis in general problems of
 quantifying the evidential content of trace materials in criminal cases has been
 established by Lindley (1977), Evett (1983, 1987) and Evett et al. (1987), the last
 dealing specifically with the case of fibre transfer.

 Consider the following. A crime has been committed during which several fibres
 have been left at the scene of the crime by the offender. A suspect has been
 apprehended as a result of a police investigation and a garment belonging to the
 suspect has been taken for examination. After the examination of the suspect's
 garment, the available forensic evidence consists of bivariate colour measurements, y
 = (Yi . ., yn), from the fibres left at the scene of the crime, together with a set x =

 tAddress for correspondence: Department of Mathematics, University of Nottingham, University Park,
 Nottingham, NG7 2RD, UK.
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 462 WAKEFIELD, SKENE, SMITH AND EVETT

 (xl, . . ., Xm) of bivariate measurements from a representative sample of m fibres
 taken from the suspect's garment. The colour of a single fibre is expressed as a pair of
 complementary chromaticity co-ordinates. For details of how these measurements are
 made, see Laing et al. (1986).

 Two mutually exclusive and exhaustive hypotheses are to be weighed against each
 other:

 (a) C-the recovered fibres came from the suspect's garment;
 (b) C-the recovered fibres came from some other source.

 If Idenotes the rest of the information (distinct from the actual colour measurements)
 which has been assembled in relation to the crime, elementary use of Bayes's theorem
 establishes that, conditioning throughout on I,

 p(CIx,y,I) = p(xyIC,I) p(CII) (1.1)
 p(Cx,y, I) p(x,yj C,I) p(CjI)

 posterior odds on C = likelihood ratio for C x prior odds on C.

 Focusing attention on the likelihood ratio as the summary of the way in which the
 colour measurements x, y provide additional evidence over that provided by I, we see
 that

 p(x,yIC,I) _ p(x,yIC,I)
 p(x,ylC,I) p(xIC,I)p(yIC,I)

 if we make the obvious assumption that C implies that y is independent of x.
 Evaluation of this expression therefore gives the evidential import of measurements
 x, y (given the other information I).

 1.2. Database Information
 The modelling of the distributions involved in the likelihood ratio requires general

 inputs beyond those derived from any one specific case. To quote Evett et al. (1987):
 'Forensic scientists have long recognized the need for background data collections to
 assist in the interpretation of evidence'. In 1982, scientists in UK forensic science
 laboratories started a collaborative project to amass information on fibres. At each
 laboratory a small representative sample of cloth was taken from every fifth fabric
 item submitted for examination. Many of these were garments but other articles such
 as carpets and bedding were included. A comprehensive questionnaire was completed
 for each sample, which was then sent to the Scottish College of Textiles, Galashiels,
 where colour measurements were obtained. In this way, by mid-1987, data including
 colour measurements had been collected on nearly 8000 samples. Whether such a
 collectiQn can ever be truly representative of the general population of fibre sources is
 a moot point which we do not consider here. Certainly, however, the data collection
 represents the best information that is currently available to the forensic scientist.
 These data enable an assessment to be made of how rare or common a particular fibre
 colour is and this underlies the evaluation of pO(y I C, I) in equation (1.2). For each
 synthetic fibre sample in the collection five pairs of chromaticity co-ordinates were
 obtained by using five different fibres. For each natural fibre sample, 10 measure-
 ments were made with 10 different fibres. Colour measurements from garments made
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 EVALUATION OF FIBRE TRANSFER EVIDENCE 463

 from natural fibres exhibit greater variability. For a full description of the data
 collection methodology, see Laing et al. (1987).

 The database identifies 13 different fibre types, of which six types make up 98Wo of
 all samples. The most common fibre type is cotton, of which there are 2340 samples
 within the database. The most common synthetic fibre is polyester, of which there are
 1512 samples.

 1.3. Previous Statistical Analysis
 Evett et al. (1987) considered in detail the case where a single fibre was recovered

 from the scene of the crime. It is recognized that equation (1.2) can be written as

 p(x,yIC,I) p(yIC,x,I)p(xIC,I) p(yIC,x,I) (1.3)
 p(X,yIC,I) p(yIC,x,I)p(xIC,I) P(yIC,I)

 by assuming that, conditional on I, x is equally likely under C and C. It was assumed
 that the distribution of fibre colour within a particular garment was adequately
 described by a bivariate normal distribution. Thus the numerator of the likelihood
 ratio (1.3) can be written

 p(yIC,x,I) =p(yI,u, I) p(y, Ix, I) d,u dE,

 where pO(y 'I i, E, I) is the density of a bivariate normal distribution with mean i and
 covariance matrix E, and p(it, I x, I) is a posterior density for these parameters,
 assuming x = (xl, . . ., xm) to have been a sample from the same bivariate normal
 distribution. Using conventional representations of vague prior knowledge regarding
 ,u and E, the form of the numerator is shown by Evett et al. (1987) to be a bivariate
 Student t-type density, having an explicit mathematical form.

 For the denominator, given I (which includes the knowledge of the type of fibre in
 question), the form p(y I C, I) is simply the density describing the general distribution
 of colour co-ordinates that we would see in whatever fibre population is defined by I,
 which Evett et al. evaluated by using a bivariate kernel density estimator.

 1.4. Motivation and Structure of this Paper
 The work described in this paper results from a collaborative project between the

 Home Office Forensic Science Service Central Research and Support Establishment
 and the University of Nottingham Statistics Group.

 The project addressed numerical and modelling issues associated with the extension
 of the above problem to several recovered fibres. The approach described by Evett
 et al. (1987) is not tractable for more than a single fibre. Numerical procedures are
 necessary whatever mathematical forms are assumed and this provided an oppor-
 tunity to examine more closely the conventional distributional assumptions of the
 original work. In addition, in the context of the possible modelling strategies
 available, the numerical demands of calculating the required likelihood ratio pose
 challenging problems within the Bayesian inference framework.

 The main purpose of the present paper is to exhibit, via a case study in an important
 and newly emerging applications field, a class of interesting and novel modelling
 problems, involving both likelihood and prior specification, and some possible
 solutions. Our emphasis throughout will be on the statistical aspects of the problem.
 In particular, we restrict attention to 'single-colour' and 'single-source' problems. It
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 464 WAKEFIELD, SKENE, SMITH AND EVETT

 is clear that the forensic scientist has to consider multicoloured garments and that
 foreign fibres attached to any scene may have come from several sources. The models
 described here can be extended to encompass these situations but no new statistical
 issues arise. In the wider context of the Home Office Forensic Science Service, there
 are important issues of integrating the statistical methodology into intelligent
 knowledge-based systems for laboratory use. We shall not discuss such problems
 here.

 In Section 2, we deal with modelling the variability of observed chromaticity co-
 ordinates among fibres from the same garment. In Section 3, we deal with modelling
 the prior (population) distribution of the parameters involved in modelling within-
 garment variability. Computational problems are discussed in Section 4 and
 extensions and refinements of the methodology are examined in Section 5. Two
 illustrative examples, taken from actual case work, are presented in Section 6.

 2. Modelling Within-garment Variability

 2.1. General Approach
 Fig. 1 displays the 'horseshoe'-shaped region within which complementary

 chromaticity co-ordinates (u, v) are constrained to lie. In this figure, N denotes the
 neutral, or achromatic, point. The positions of typical hues, i.e. colours, are also
 indicated. In essence, the colour space reflects hue and saturation but does not take
 into account lightness. Thus all whites, greys and black map to the neutral point. If a
 line were drawn from the neutral point to the boundary of the colour space, move-
 ment along the line towards the boundary represents an increase in saturation (colours
 described by a single wavelength lie on the boundary)-the hue is constant. Most
 undyed cloth has a pale yellow colour which is close to the neutral point. In all dyeing
 processes there is some variability in uptake of the dye. When a single dye is used the
 colour of the fibres reflects both the undyed colour and the dye colour with saturation
 exhibiting rather more variability. Measurements thus appear close to a line joining
 the undyed point to the dye colour. Many colours are achieved via the combination of
 two or more dyes. In this case colour measurements for individual fibres are scattered
 about a line joining the two predominant dye colours. The need for multiple dyes is
 also more commonplace for certain colours. For example, many blues can be achieved
 with a single dye whereas greens often require multiple dyes.

 A typical scatter diagram for the co-ordinates of fibres from a particular sample
 within the database is also shown in Fig. 1. The inspection of many such scatterplots
 indicated a preferred orientation with the long axis frequently pointing towards the
 yellow area, consistent with the above discussion. The direct modelling of the
 bivariate distribution is thus complicated by a correlation which varies stochastically
 with location. As an initial step therefore, for each sample of a particular fibre type,
 sample means were calculated and principal component axes were identified.
 Projections of standardized values on to these axes were then studied to try to identify
 possible distributional forms in the long and short directions. Fig. 2 shows the
 standardized plots for wool fibres.

 This in turn leads to the following general modelling strategy for within-garment
 variability.

 (a) Identify two orthogonal axes u' and v'.
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 0.8

 0.6 -

 0.4 -

 0.2 N-

 0-

 0 0.2 0.4 0.6 0.8

 Fig. 1. Scatter of five bivariate measurements in colour space (approximate positions of the main
 colours are indicated: 1, yellow; 2, red; 3, blue; 4, green)

 I - illI
 -2 -1 0 1 2 -2 0 2

 (a) (b)

 Fig. 2. Standardized values for wool fibres in (a) the long direction and (b) the short direction

 (b) Identify the orientation of the u '-axis relative to the original u-axis.
 (c) Assume, given orientations, locations and spreads, that the distributions of

 projections of the chromaticity co-ordinates on to these axes are statistically
 independent.

 Given this strategy, the bivariate density describing fibre colour within a garment is a
 five-parameter mathematical family with one parameter for orientation, two for
 location and two for spread. The orientation is defined as the angle of the u '-axis
 relative to the u-axis. Additionally the spreads are constrained so that the long
 direction of scatter is identified as having the larger spread parameter.

 The assumption made in Evett et at. (1987) was that the scatter was well modelled
 by a bivariate normal distribution. However, considering separately the projections
 on to the long and short axes as in Fig. 2, the normal hypothesis is clearly rejected by a
 conventional X2-test, for nearly all fibre types. This finding prompts a search for other
 distributional shapes providing a more satisfactory fit to the observed univariate
 distributions.
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 466 WAKEFIELD, SKENE, SMITH AND EVETT

 2.2. Exponential Power Family
 The so-called exponential power family is a general univariate family of

 distributions with location r, spread a and shape parameter 3. It is defined by

 p(zIor,u,3ocuoexp( - I z-r 2/(1+3)) P(zlT a = exp(- 2Z a|

 This family includes both platykurtic and leptokurtic alternatives to the normal
 distribution. See, for example, Box and Tiao (1973).

 For a particular fibre type and direction an attempt was made to find values of a
 which mimicked the profiles obtained via plots similar to those in Fig. 2. It was not
 possible, however, to identify a particular value of 3 which adequately modelled the
 tail behaviour in either direction. For example, the observed distribution in the long
 direction is heavy shouldered and light tailed.

 2.3. 'Roof' Distribution
 A second approach considered was to describe the joint distributions via

 conditional distributions which were simple combinations of rectangular and
 triangular distributions. See Fig. 3. It was found that a good fit to the data was
 obtained, provided that a small proportion of fibre measurements were considered to
 be lying in a skirt around the base of the roof.

 In addition to the usual five parameters-(It1, 112), mean locations; (a,, a2),
 standard deviation spreads; X, orientation-further constants were required to
 describe the lengths of the different portions of the roof, e.g. the distance in the long
 direction, from the mean, to the point where the roof ridge begins to slope down and
 the extent of the skirt. These extra constants are easily estimated for a given fibre type
 by considering standardized measurements in each of the long and short directions,
 together with the constraints necessary for the total probability to equal 1. Although
 this model provided very satisfactory fits to much of the fibre data, it proved, subse-

 (a) (b)

 tX '-~~~~~~~~~~~(b)
 (c) (a) (c)

 Fig. 3. Roof distribution: three sections and a plan view
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 EVALUATION OF FIBRE TRANSFER EVIDENCE 467

 quently, to be very difficult to operate with numerically and so yet another alternative
 was sought.

 2.4. Beta Distribution
 It was known that the measurement procedure discarded fibres which were outlying

 when compared with the main cluster of a particular sample. Initially this was thought
 to have little influence on tail shape but subsequently this fact motivated
 consideration of finite range distributions. Bivariate densities defined by products of
 symmetric scaled beta distributions provided an adequate fit to the data and proved
 considerably more tractable computationally.

 A univariate random variable Z has a symmetric beta distribution on (i - at,
 it + at) if the density of W = (z - A)/2at + 2 is given by

 p(w) o Wa-l(1-W)a-l 0< W < 1.

 Thus a and t must be estimated for the two orthogonal directions for each fibre type.
 This was accomplished with a search procedure and a minimum chi-squared criterion,
 but subsequent sensitivity studies suggested that precise values were not critical.

 2.5. Comment
 Although the large amount of data available makes it possible to distinguish

 between alternative models for the within-garment variability by using goodness-of-
 fit criteria, it must be remembered that the overall objective is the computation of the
 likelihood ratio (1.2). It is the sensitivity of this ratio to modelling assumptions which
 is of primary concern and thus the eventual choice of model is mediated by sensitivity
 issues.

 3. Modelling the Prior Distribution

 Given a model for within-garment variation involving five parameters, the
 evaluation of the likelihood ratio requires the specification of a prior distribution

 P(pA, 2, al, a2, 4). Given the size of the database it is technically possible to obtain
 estimates of the parameters from each of the samples in the database and then to
 construct a five-dimensional kernel estimate. However, such an estimate is computa-
 tionally intensive and the numerical integration techniques to be described in Section 4
 require a large number of such evaluations.

 Another approach would be to evaluate the prior in advance at a regular grid of
 points within the five-dimensional space and then to use interpolation. However, the
 number of points required to characterize such a surface is large and five-dimensional
 interpolation is difficult.

 The discussion in Section 2.1 combined with an empirical examination of the
 database suggested that the prior could be well approximated by a form

 P(A,l 2, a1, a2, 0 = P(A,l 2) p(al I r) P(a21 r) p(q I X), (3.1)
 where r is the radial distance from the neutral point to (A,, 2) and X describes the
 radial angle of the cluster relative to the neutral point (Fig. 4), i.e. the spreads on the
 principal component axes are independent, given position, and depend only on
 the distance from the neutral point.
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 v

 x 2 X~~~~x XX (1 .U2)
 It /

 N

 u

 Fig. 4. r and X for a particular data cloud

 The orientation of the long axis is independent of saturation but depends on hue,
 i.e. on the combination of dyes involved. For example, in the blue region of the colour
 space, we would expect the majority of garments to have a density aligned towards the
 undyed point whereas with greens, which can arise from pure green dyes or from
 combinations of blues and yellows, we would expect the prior for 0 to be more
 disperse reflecting this mixture of possibilities.
 Noting that

 p (ori I r) = p (ai . r)/p (r) ,i = 19 29

 and

 P(o I X) = P(og X)/P(X)g

 we see that a prior distribution can be evaluated with four bivariate densities,
 P(19 A2). P(arl, r), p(a2, r) and p(0, X), each of which can be constructed by using
 kernel methods.

 Rather than having to evaluate the four two-dimensional kernels every time that a
 prior probability was required, it was decided to set up four reference tables in
 advance. If the database were to be updated it would then be simple to recreate the
 required grids of points. When the prior for a particular point was required, cubic
 splines were used to interpolate to the desired point. The reference tables were
 achieved as follows: for each of the seven quantities of interest (five model
 parameters, the radial distance and the radial angle) sample estimates were obtained
 for each sample in the database of a particular flbre type. From these, kernel density
 estimates for each of the bivariate densities were evaluated at each point on a 20 x 20
 grid. For (ri and r, the kernel densities were created in terms of log ai and log r. The
 densities were then inverted to obtain the required form in terms of the original
 parameters. This operation was undertaken so that density estimates close to 0 were
 not underestimated; see Silverman (I1986). For the angles 0 and X. the estimates were
 'wrapped around' so that, for example, X close to 360? contributed to the kernel
 estimate for angles close to 0? as well as to 360?.

 Bivariate normal kernels used after initial experimentation indicated that the
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 0.3 -o005ooo-0 o 5

 200
 0.2-

 0.1 100

 0.0 0-
 0.000 0.605 0.010 -50 0 5

 (c) (d)

 Fig. 5. Kernel density estimates for wool fibres for (a)p (Al1, ,tt2), (b) p (a,, r), (c) p(a2, r) and (d) p(4, 0):
 1, yellow; 2, red; 3, blue; 4, green

 density estimates were insensitive to the choice of kernel shape. Initially, window
 widths were chosen proportional to n - "I by using guidelines suggested by Silverman
 (1986). However, for fibre types where the amount of data was large this resulted, for

 P(I.', /.2) especially, in a very spiky density estimate. Consequently the final density
 estimates used slightly larger window widths giving a smoothness which was
 consistent with the considerable prior knowledge communicated to us by the Home
 Office colour chemists. Contour plots of the four bivariate density estimates for wool
 are shown in Fig. 5. Displayed contours are at iWo, 5%, 10%, 25%o, 500o, 75/o and
 95%/o of the mode.

 Fig. 5(a) shows that a large amount of the data lies in the blue and the red regions.
 The triangular shape of the contour plot is typical and is similar for other fibre types.
 Each of the multiple modes represents popular colours. The large central mode occurs
 at the neutral point. Figs 5(b) and 5(c) confirm that the standard deviations increase
 with radius-the clusters show more variability as we move away from the neutral

 point. Fig. 6(a) confirms this and displays the prior for p (G, I r) for two particular
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 p(ral = .02)

 (a,rI r.10)

 0.00 O.01 0.02 0.03 -50 0 50
 1T 0

 (a) (b)

 Fig. 6. (a) p (u, I r) and (b) marginal distributionp (0)

 choices of r, one small and one large. Referring now to Fig. 5(d), the mode occurring
 at approximately X = 3000 corresponds to the yellows, which all tend to point towards
 the neutral point. In this region of the colour space, this orientation corresponds to

 k = 500. The other mode at X = 1300 represents the blues, which again are pre-
 dominantly oriented towards the neutral point. k is defined between - 900 and 900
 and so even though the blues and yellows lie on opposite sides of the neutral point they
 have similar values of k. Greens, lying at X = 2400, have a flatter distribution, reflect-
 ing the fact that greens often arise as mixtures of two different colours; see the
 discussion in Section 2.1. If the greens tended to point towards the neutral point we
 would expect the mode of p(k I X = 2400) to lie at k = - 600. The mode of this
 conditional distribution actually lies at X = 500 indicating that the greens are often
 combinations of blues and yellows. Fig. 6(b) shows the marginal distribution p(O).
 This distribution was obtained from p(k, X) via discrete approximations to the
 required integrals. The mode at approximately 500 reflects the previous discussion of
 the blues, the yellows and the greens.

 4. Implementation

 4.1. Evaluation of Likelihood Ratio
 Each term in equation (1.2) represents the joint distribution of a set of bivariate

 colour measurements from a single source. Reference to C and C can therefore be
 dropped and, if z denotes a collection (zl,..*, Zk) of k bivariate measurements,

 k

 p(zI)= _ p(ziI) p(O I) dO, (4.1)

 with p (zi I 0) modelled by one of the forms discussed in Section 2 and assumed to be
 independent of I, and p (O II) specifying a prior of the form discussed in Section 3.
 Note that the integral still depends on I, the information additional to the actual
 colour measurements, including fibre type.
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 EVALUATION OF FIBRE TRANSFER EVIDENCE 471

 4.2. Computation

 For any choice of p (zi I O) and p (O I), the evaluation of equation (4.1) requires the
 evaluation of a five-dimensional numerical integral.

 Naylor and Smith (1982, 1983) and Smith et al. (1985, 1987) describe several novel
 numerical integration strategies for the implementation of Bayesian methods. Among
 these are adaptive Cartesian product Gauss-Hermite methods which we outline very
 briefly here.

 The Gauss-Hermite strategy is motivated by first noting that, in one dimension, if
 an integrand can be well approximated by a polynomial x normal density then the
 integral will be well estimated by a Gauss-Hermite rule (with an exact answer from an
 n-point rule if the integrand is actually of polynomial x normal form, with the
 polynomial component of degree up to 2n - 1). We then note that, possibly after
 suitable reparameterization, many of the marginal posterior densities arising in
 Bayesian inference can plausibly be regarded as of polynomial x normal form. A
 joint posterior density for many parameters, however, is likely to exhibit several
 dependencies, which would make the application of Gauss-Hermite product rules
 highly inefficient. Moreover, the implementation of the Gauss-Hermite rule in each
 parameter direction requires the specification of a location and scale for that
 direction, and correct values for these are not known.

 This suggests the following iterative strategy for finding a product grid at which the
 evaluations of the likelihood x prior function provide the basis for the accurate
 evaluation of the normalizing constant and hence any aspects of interest of the joint
 posterior density.

 (a) Reparameterize individual parameters so that the resulting working
 parameters can be well represented by a polynomial x normal form. Often
 this parameterization will allow the working parameters to take any value on
 the real line.

 (b) Using initial estimates of the joint posterior mean vector and covariance
 matrix for the working parameters, transform further to a centred, scaled,
 more orthogonal set of parameters.

 (c) Using the derived initial location and scale estimates for these orthogonal
 parameters, perform Cartesian product integration of functions of interest
 using suitably dimensioned grids.

 (d) Iterate, successively updating the mean and covariance estimates, until stable
 results are obtained both within and between grids of specified dimension.

 The parameterization adopted for the problem described here,

 V1 = 1si

 2 = A2,

 13 = log U2

 / 2

 U2 /
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 472 WAKEFIELD, SKENE, SMITH AND EVETT

 proved adquate for normal, exponential power and roof densities. However, further

 constraints in the range of It, A2,i and u2 are implied by zl, . . ., Zk when the bivariate
 beta distribution is considered. This point is discussed in more detail in Wakefield

 et al. (1989). A further point is worth mentioning. The mean parameters i, and A2
 must lie within the horseshoe-shaped region of Fig. 1 and so could be constrained
 accordingly. In practice, however, they never fall close to the boundary. Fig. 5(a)
 bears this out. The variances U2 and q2 are similarly constrained but again, in practice,
 this is not a problem.

 4.3. Sensitivity Studies
 Elements of the likelihood ratio (1.2) were calculated with a variety of combina-

 tions of the within-garment variability model (normal, double exponential, roof and
 beta) and prior specifications (reflecting our uncertainty in the choice of window
 width). Detailed findings of the sensitivity are not given here. The results showed,
 however, that although the values of individual components were clearly influenced
 by the choice of model and prior, the resulting likelihood ratios were within a factor of
 2 in most cases.

 Although all such combinations are computationally feasible, the computational
 cost is influenced by the choice of model to some extent with bivariate normality being
 the most efficient given the use of the iterative Gauss-Hermite strategy. Furthermore,
 likelihood ratios accurate to within a factor of 10 are currently viewed as sufficient to
 represent evidential content. Thus the modelling and sensitivity exercise shows that
 the adoption of bivariate normality as the default model is adequate at present. The
 examples which follow in Section 6 have been analysed under this assumption. Imple-
 mentation of the integration procedures is possible on the current range of personal
 computer systems although more powerful single-user workstations are more
 appropriate. Further developments in computer technology will minimize the
 argument for choosing bivariate normality over a more realistic distributional form.
 Bivariate beta distributions are our preferred choice.

 5. Extensions and Refinements

 We now consider in a little more detail the conditioning event I appearing in
 equation (1. 1). Irepresents all additional information available about the fibres apart
 from the actual complementary chromaticity co-ordinate measurements.

 As a simple illustration of a typical event I, consider the situation where foreign
 fibres have been found on a victim. An initial examination of the fibres reveals that
 they

 (a) are of a particular type (e.g. wool or nylon),
 (b) may have characteristics such as delustrant etc. and
 (c) to the naked eye are of a particular colour (e.g. red or blue) and possibly can be

 described as light or dark etc.

 Then I is the event that a suspect has been found with a garment containing fibres
 which match this description.

 The precise measurement of the colour of both recovered and control fibres is then
 undertaken and y and x are obtained.
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 EVALUATION OF FIBRE TRANSFER EVIDENCE 473

 As we see from equation (1.1), the overall contribution to the posterior odds on the
 recovered fibres having come from the suspect's garment is a combination of the
 likelihood ratio (1.2), based on y and x and I, and an odds ratio conditioned just on I.
 Detailed quantification of the latter term, p(CI I)/p(CI I), clearly depends on the
 specific circumstances surrounding the identification of a suspect and a garment. For
 example, was the suspect primarily identified because of the garment, or was the
 garment found subsequently to the identification of the suspect on other grounds? We
 shall not pursue such issues here, but instead concentrate on the effect of the

 information in (a)-(c) on p (O I I).
 Taking account of an Ibased on (a) and/or (b) is straightforward in theory, though

 it raises some issues in practice. Such information simply identifies the subset of the
 database on which the kernel methodology of Section 3 is to be applied.

 For natural fibres such as wool and cotton, there is usually no additional informa-
 tion of type (b) available and thus the present database is sufficient to obtain good
 kernel density estimates. For rare fibre types or situations where a combination of
 synthetic type, cross-sectional shape and radius of fibres and delustrant leads to a
 precise initial match, the present database is not yet sufficiently large to yield precise
 descriptions of colour distribution. In such cases the likelihood ratio can still be
 calculated using the near uniform priors obtained from the few data points available.
 The evidential value of the colour measurements will thus be small but the initial
 matching process will usually have high evidential content. Information of the kind
 described by (c) and by the fact that an apparent colour match has been made is not
 straightforward to incorporate. In effect, it imposes a further conditioning, which
 implies that the kernel, for the appropriate part of the database implied by (a) and (b),
 is defined only over a subset of the colour space, rather than over the entire horseshoe-
 shaped region described earlier (see Fig. 1). What is difficult to quantify is precisely
 which subregion of the colour space is defined by the description in (c) and the fact
 that a prima facie visual match has been obtained.

 Our solution to this problem is to define the appropriate subset of the colour space
 to be a circle centred at the mean location of the recovered fibres. The size of this circle
 was chosen after consulting forensic science case officers. The region of a match does,
 to some extent, depend on the mean location but our analyses proved to be reasonably
 insensitive to the exact value chosen. The implied form of p(O II) is then modified
 from that discussed in Section 3 by replacing the kernel density estimate of the

 p(Al ', A2) component by one constrained to the circular region. The use of a circle
 rather than some other shaped neighbourhood has negligible impact on the values of
 the likelihood ratio obtained and this approach has been used in the following case
 studies.

 6. Illustrative Analyses

 6.1. Example I
 The victim was dragged into a garden and was robbed of her handbag. The victim

 was wearing a green wool and synthetic fibre jumper. The assailant was wearing a
 grey-green checked cotton shirt. Three green wool fibres were found on the suspect's
 shirt. Seven grey-green cotton fibres were found on the victim's jumper. 10 control
 fibres were taken from both the suspect's shirt and the victim's jumper.
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 Fig. 7. Control (x) and recovered (X) fibre measurements for (a) the green wool and (b) the
 grey-green cotton

 Consider first the green wool. Fig. 7(a) gives a scatterplot showing measurements
 from both recovered and control fibres. The value of the likelihood ratio based on
 these data alone is 700.

 Considering only the grey-green cotton, the value of the likelihood ratio is 30. The
 control and recovered fibre measurements are shown in Fig. 7(b).

 In most cases, it can be argued that, conditional on I, the likelihood ratio for two-
 way transfer is the product of the separate ratios. Overall, therefore, the likelihood
 ratio in this case is 21000.

 6.2. Example 2
 Following a complex series of armed robberies, the forensic scientist was asked to

 investigate links between three suspects and a number of getaway cars. In particular, it
 was required to investigate the link between a knife found in the possession of one of
 the suspects and several purple nylon-66 cash bags which had been split open. We shall
 consider

 (a) purple fibres from the cash bags and the knife and
 (b) blue wool fibres found in one of the cars and matched with a suit owned by one

 of the suspects.

 6.2.1. Purple cash bags
 The manufacturers were contacted and only two batches of this type of fibres had

 ever been made. 73 fibres were found on the knife and chromaticity co-ordinates were
 calculated from a randomly selected 15 of these. Fibres from all the bags were visually
 indistinguishable but they could be split into two sets by visible spectroscopy and thin
 layer chromatography. 13 fibres matched the first batch and the remaining two fibres
 matched the second batch. There were five control measurements for each of the
 batches. The scatterplot of the control and recovered fibres for the second batch is
 shown in Fig. 8(a). Although there are only two recovered fibres, the likelihood ratio
 is 217. Posterior moments of model parameters indicated that, in this example, both
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 Fig. 8. Control ( x ) and recovered (-) fibre measurements for (a) the purple cash bags and (b) the blue
 wool suit

 the orientation and the dispersion of the recovered and control data were very similar.
 The high value is not a consequence of the rarity of the purple colour as the ratio is
 conditional on I. The fact that a knife was recovered with fibres that matched the rare
 colour of the cash bags would normally increase the strength of evidence. However,

 this aspect of the evidence must be modelled via p (CI I)/p(Cl I).

 6.2.2. Blue wool suit
 15 blue wool fibres were found and these matched fibres taken from a blue suit

 owned by one of the suspects. In this case 20 control measurements were taken and the
 subsequent measurements, along with the recovered co-ordinates, are displayed in
 Fig. 8(b).

 In this case a likelihood ratio of 0.8 was obtained, the data being sufficiently
 numerous to suggest differences in dispersion between the recovered and control
 samples.
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