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This document is a copy (with some additions) of the blog post by Steven L. Scott (2017),
available at https://www.unofficialgoogledatascience.com/2017/07/fitting-bayesian-structur
al-time-series.html

1 Introduction

Time series data are everywhere, but time series modeling is a fairly specialized area within
statistics and data science. This post describes the bsts software package, which makes it
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easy to fit some fairly sophisticated time series models with just a few lines of R code.

Time series data appear in a surprising number of applications, ranging from business, to
the physical and social sciences, to health, medicine, and engineering. Forecasting (e.g. next
month’s sales) is common in problems involving time series data, but explanatory models
(e.g. finding drivers of sales) are also important. Time series data are having something of a
moment in the tech blogs right now, with Facebook announcing their “Prophet” system for
time series forecasting (Sean J. Taylor and Ben Letham (2017)), and Google posting about its
forecasting system in this blog (Eric Tassone and Farzan Rohani (2017)).

This post summarizes the bsts R package, a tool for fitting Bayesian structural time series
models. These are a widely useful class of time series models, known in various literatures as
“structural time series,” “state space models,” “Kalman filter models,” and “dynamic linear
models,” among others. Though the models need not be fit using Bayesian methods, they have
a Bayesian flavor and the bsts package was built to use Bayesian posterior sampling.

The bsts package is open source. You can download it from CRAN with the R command
install.packages("bsts"). It shares some features with Facebook and Google systems, but
it was written with different goals in mind. The other systems were written to do “forecasting
at scale,” a phrase that means something different in time series problems than in other corners
of data science. The Google and Facebook systems focus on forecasting daily data into the
distant future. The “scale” in question comes from having many time series to forecast, not
from any particular time series being extraordinarily long. The bottleneck in both cases is
the lack of analyst attention, so the systems aim to automate analysis as much as possible.
The Facebook system accomplishes this using regularized regression, while the Google system
works by averaging a large ensemble of forecasts. Both systems focus on daily data, and derive
much of their efficiency through the careful treatment of holidays.

There are aspects of bsts which can be similarly automated, and a specifically configured
version of bsts is a powerful member of the Google ensemble. However, bsts can also be
configured for specific tasks by an analyst who knows whether the goal is short term or long
term forecasting, whether or not the data are likely to contain one or more seasonal effects, and
whether the goal is actually to fit an explanatory model, and not primarily to do forecasting
at all.

The workhorse behind bsts is the structural time series model. These models are briefly de-
scribed in the section Structural time series models. Then the software is introduced through a
series of extended examples that focus on a few of the more advanced features of bsts. Exam-
ple 1: Nowcasting includes descriptions of the local linear trend and seasonal state models,
as well as spike and slab priors for regressions with large numbers of predictors. Example 2:
Long term forecasting describes a situation where the local level and local linear trend mod-
els would be inappropriate. It offers a semilocal linear trend model as an alternative. Example
3: Recession modeling describes an model where the response variable is non-Gaussian.
The goal in Example 3 is not to predict the future, but to control for serial dependence in an
explanatory model that seeks to identify relevant predictor variables. A final section concludes
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with a discussion of other features in the package which we won’t have space (maybe “time”
is a better word) to explore with fully fleshed out examples.

2 Bayesian Learning: Black Swans

We introduce the concept of Bayesian learinng using the Black Swan inference problem. Sup-
pose that after 𝑛 trials where 𝑛 is large you have only seen successes and that you assess the
probability of the next trial being a success as (𝑇 +1)/(𝑇 +2) that is, almost certain. This is a
model of observing White Swans and having never seen a Black Swan. Taleb (2007) makes it
sound as if the rules of probability are not rich enough to be able to handle Black Swan events.
There is a related class of problems in finance known as Peso problems where countries decide
to devalue their currencies and there is little a prior evidence from recent history that such an
event is going to happen.

To obtain such a probability assessment we use a Binomial/Beta conjugate Bayes updating
model. The key point is that it can also explain that there is still a large probability of a
Black Swan event to happen sometime in the future. Independence model has difficulty doing
this.

The Bayes Learning Beta-Binomial model will have no problem. We model with where 𝑌𝑡 = 0
or 1, with probability 𝑃 (𝑌𝑡 = 1 ∣ 𝜃) = 𝜃. This is the classic Bernoulli “coin-flipping” model
and is a component of more general specifications such as regime switching or outlier-type
models.

The likelihood for a sequence of Bernoulli observations is

𝑝 (𝑦 ∣ 𝜃) =
𝑇

∏
𝑡=1

𝑝 (𝑦𝑡 ∣ 𝜃) = 𝜃∑𝑇
𝑡=1 𝑦𝑡 (1 − 𝜃)𝑇 −∑𝑇

𝑡=1 𝑦𝑡 .

The maximum likelihood estimator is the sample mean

̂𝜃 = (1/𝑇 )
𝑇

∑
𝑡=1

𝑦𝑡.

This makes little sense when you just observe white swans. It predicts ̂𝜃 = 1 and gets shocked
when it sees a black swan (zero probability event). Bayes, on the other hand, allows for
‘learning’.

To do this we need prior distribution for the ‘parameter’ 𝜃. A natural choice is a Beta distri-
bution, denoted by 𝜃 ∼ Beta (𝑎, 𝐴) with pdf is given by

𝑝 (𝜃 ∣ 𝑎, 𝐴) = 𝜃𝑎−1 (1 − 𝜃)𝐴−1

𝐵 (𝑎, 𝐴) ,
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where 𝐵 (𝛼, 𝐴) denotes a Beta function. Since 𝑝 (𝜃 ∣ 𝑎, 𝐴) is a density and integrates to 1, we
have

𝐵 (𝑎, 𝐴) = ∫
1

0
𝜃𝑎−1 (1 − 𝜃)𝐴−1 𝑑𝜃.

Bayes rule then tell us how to combine the likelihood and prior to obtain a posterior distri-
bution, namely 𝜃 ∣ 𝑌 = 𝑦. What do we believe about 𝜃 given a sequence of. Our predictor
rule is then 𝑃(𝑌𝑡=1 = 1 ∣ 𝑌 = 𝑦) = E(𝜃 ∣ 𝑦) it is straightforward to show that the posterior
distribution is again a Beta distribution with

𝑝 (𝜃 ∣ 𝑦) ∼ 𝐵 (𝑎𝑇 , 𝐴𝑇 ) and 𝑎𝑇 = 𝑎 +
𝑇

∑
𝑡=1

𝑦𝑡, 𝐴𝑇 = 𝐴 + 𝑇 −
𝑇

∑
𝑡=1

𝑦𝑡

There is a “conjugate” form of the posterior: it is also a Beta distribution and the hyper-
parameters 𝑎𝑇 and 𝐴𝑇 depend on the data only via the sufficient statistics, 𝑇 and ∑𝑇

𝑡=1 𝑦𝑡.
The posterior mean and variance are

E [𝜃 ∣ 𝑦] = 𝑎𝑇
𝑎𝑇 + 𝐴𝑇

and Var (𝜃 ∣ 𝑦) = 𝑎𝑇 𝐴𝑇
(𝑎𝑇 + 𝐴𝑇 )2 (𝑎𝑇 + 𝐴𝑇 + 1)

,

respectively. This implies that for large samples, E(𝜃 ∣ 𝑦) ≈ ̄𝑦 = ̂𝜃, the MLE!

Now, if we assume a uniform prior specification, 𝜃 ∼ 𝐵(1, 1) = 𝑈(0, 1), then we have the
following probability assessment. After 𝑇 trials, suppose that we have only seen 𝑇 successes,
namely, (𝑦1, … , 𝑦𝑇 ) = (1, … , 1). Then you assess the probability of the next trial being a
success as

𝑝(𝑌𝑇 +1 = 1 ∣ 𝑦1 = 1, … , 𝑦𝑇 = 1) = 𝑇 + 1
𝑇 + 2

This follows from the mean of the Beta posterior, 𝜃 ∣ 𝑦 ∼ Beta(1 + 𝑇 , 1), 𝑃(𝑌𝑇 +1 = 1 ∣ 𝑦) =
E𝜃∣𝑦 [𝑃 (𝑌𝑇 =1 ∣ 𝜃)] = E[𝜃 ∣ 𝑦]. For large 𝑇 this is almost certain. Figure 1 shows the expected
value of observing 1 after we observed 𝑇 successful outcomes.
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Figure 1: Posterior Probability of a White Swan
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Now consider a future set of 𝑛 trials, where 𝑛 is also large. The probability of never seeing a
Black Swan is then given by

𝑝(𝑦𝑇 +1 = 1, … , 𝑦𝑇 +𝑛 = 1 ∣ 𝑦1 = 1, … , 𝑦𝑇 = 1) = 𝑇 + 1
𝑇 + 𝑛 + 1

For a fixed 𝑇 , and large 𝑛, we have 𝑇 +1
𝑇 +𝑛+1 → 0. Hence, we will see a Black Swan event with

large probability — we just don’t know when! The exchangeable Beta-Binomial model then
implies that a Black Swan event will eventually appear. One shouldn’t be that surprised when
it actually happens.

3 Structural time series models

A structural time series model is defined by two equations. The observation equation relates
the observed data 𝑦𝑡 to a vector of latent variables 𝛼𝑡 known as the “state.”

𝑦𝑡 = 𝑍𝑇
𝑡 𝛼𝑡 + 𝜖𝑡.

The transition equation describes how the latent state evolves through time.

𝛼𝑡+1 = 𝑇𝑡𝛼𝑡 + 𝑅𝑡𝜂𝑡.

The error terms 𝜖𝑡 and 𝜂𝑡 are Gaussian and independent of everything else. The arrays 𝑍𝑡 ,
𝑇𝑡 and 𝑅𝑡 are structural parameters. They may contain parameters in the statistical sense,
but often they simply contain strategically placed 0’s and 1’s indicating which bits of 𝛼𝑡 are
relevant for a particular computation. An example will hopefully make things clearer.

The simplest useful model is the “local level model,” in which the vector 𝛼𝑡 is just a scalar 𝜇𝑡.
The local level model is a random walk observed in noise.

𝑦𝑡 =𝜇𝑡 + 𝜖𝑡
𝜇𝑡+1 =𝜇𝑡 + 𝜂𝑡.

Here 𝛼𝑡 = 𝜇𝑡 , and 𝑍𝑡 , 𝑇𝑡, and 𝑅𝑡 all collapse to the scalar value 1. Similar to Bayesian
hierarchical models for nested data, the local level model is a compromise between two extremes.
The compromise is determined by variances of 𝜖𝑡 ∼ 𝑁(0, 𝜎2) and 𝜂𝑡 ∼ 𝑁(0, 𝜏2). If 𝜏2 = 0 then
𝜇𝑡 is a constant, so the data are IID Gaussian noise. In that case the best estimator of 𝑦𝑡+1
is the mean of 𝑦1, … , 𝑦𝑡. Conversely, if 𝜎2 = 0 then the data follow a random walk, in which
case the best estimator of 𝑦𝑡+1 is 𝑦𝑡. Notice that in one case the estimator depends on all
past data (weighted equally) while in the other it depends only on the most recent data point,
giving past data zero weight. If both variances are positive then the optimal estimator of 𝑦𝑡+1
winds up being “exponential smoothing,” where past data are forgotten at an exponential rate
determined by the ratio of the two variances. Also notice that while the state in this model is

5



0 100 200 300 400 500

12
0

14
0

16
0

18
0

Index

A
A

P
L 

P
ric

e

Figure 2: Apple Adjusted Closing Price
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Figure 3: Apple Adjusted Closing Price

Markov (i.e. it only depends on the previous state), the dependence among the observed data
extends to the beginning of the series.

In the example above, one of the plots shows the price of the Apple stock from ‘2021-01-01’,
to = 2022-12-31. The other plot is a sequence generated from a random walk model fitted to
the Apple price data. Can you spot which one is which?

Structural time series models are useful because they are flexible and modular. The analyst
chooses the structure of 𝛼𝑡 based on things like whether short or long term predictions are
more important, whether the data contains seasonal effects, and whether and how regressors
are to be included. Many of these models are standard, and can be fit using a variety of
tools, such as the StructTS function distributed with base R or one of several R packages for
fitting these models (with the dlm package (Petris (2010), Campagnoli, Petrone, and Petris
(2009)) deserving special mention). The bsts package handles all the standard cases, but it
also includes several useful extensions, described in the next few sections through a series of
examples. Each example includes a mathematical description of the model and example bsts
code showing how to work with the model using the bsts software. To keep things short,
details about prior assumptions are largely avoided.

3.1 Example 1: Nowcasting

S. Scott and Varian (2014) and S. L. Scott and Varian (2015) used structural time series models
to show how Google search data can be used to improve short term forecasts (“nowcasts”) of
economic time series. Figure below shows the motivating data set from S. Scott and Varian
(2014), which is also included with the bsts package. The data consist of the weekly initial
claims for unemployment insurance in the US, as reported by the US Federal Reserve. Like
many official statistics they are released with delay and subject to revision. At the end of
the week, the economic activity determining these numbers has taken place, but the official
numbers are not published until several days later. For economic decisions based on these and
similar numbers, it would help to have an early forecast of the current week’s number as of
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the close of the week. Thus the output of this analysis is truly a “nowcast” of data that has
already happened rather than a “forecast” of data that will happen in the future.
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Figure 4: Weekly initial claims for unemployment in the US.

There are two sources of information about the current value 𝑦𝑡 in the initial claims series: past
values 𝑦𝑡−𝜏 describing the time series behavior of the series, and contemporaneous predictors
𝑥𝑡 from a data source which is correlated with 𝑦𝑡 , but which is available without the delay
exhibited by 𝑦𝑡 . The time series structure shows an obvious trend (in which the financial and
housing crises in 2008 - 2009 are apparent) as well as a strong annual seasonal pattern. The
external data source explored by Scott and Varian was search data from Google trends with
search queries such as “how to file for unemployment” having obvious relevance.

Scott and Varian modeled the data using a structural time series with three state compo-
nents:

• trend 𝜇𝑡
• seasonal pattern 𝜏𝑡

• regression component 𝛽𝑇 𝑥𝑡.
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The model is

𝑦𝑡 =𝜇𝑡 + 𝜏𝑡 + 𝛽𝑇 𝑥𝑡 + 𝜖𝑡
𝜇𝑡+1 =𝜇𝑡 + 𝛿𝑡 + 𝜂0𝑡
𝛿𝑡+1 =𝛿𝑡 + 𝜂1𝑡

𝜏𝑡+1 = −
𝑆−1
∑
𝑠=1

𝜏𝑡 + 𝜂2𝑡.

The trend component looks similar to the local level model above, but it has an extra term 𝛿𝑡 .
Notice that 𝛿𝑡 is the amount of extra 𝜇 you can expect as 𝑡 → 𝑡 + 1, so it can be interpreted as
the slope of the local linear trend. Slopes normally multiply some 𝑥 variable, but in this case
𝑥 = Δ𝑡, which omitted from the equation because it is always 1. The slope evolves according
to a random walk, which makes the trend an integrated random walk with an extra drift term.
The local linear trend is a better model than the local level model if you think the time series is
trending in a particular direction and you want future forecasts to reflect a continued increase
(or decrease) seen in recent observations. Whereas the local level model bases forecasts around
the average value of recent observations, the local linear trend model adds in recent upward
or downward slopes as well. As with most statistical models, the extra flexibility comes at the
price of extra volatility.

The best way to understand the seasonal component 𝜏𝑡 is in terms of a regression with seasonal
dummy variables. Suppose you had quarterly data, so that 𝑆 = 4. You might include the
annual seasonal cycle using 3 dummy variables, with one left out as a baseline. Alternatively,
you could include all four dummy variables but constrain their coefficients to sum to zero.
The seasonal state model takes the latter approach, but the constraint is that the 𝑆 most
recent seasonal effects must sum to zero in expectation. This allows the seasonal pattern to
slowly evolve. Scott and Varian described the annual cycle in the weekly initial claims data
using a seasonal state component with 𝑆 = 52. Of course weeks don’t neatly divide years, but
given the small number of years for which Google data are available the occasional one-period
seasonal discontinuity was deemed unimportant.

Let’s ignore the regression component for now and fit a bsts model with just the trend and
seasonal components.

The first thing to do when fitting a bsts model is to specify the contents of the latent state
vector 𝛼𝑡. The bsts package offers a library of state models, which are included by adding
them to a state specification (which is just a list with a particular format). The call to
AddLocalLinearTrend above adds a local linear trend state component to an empty state
specification (the list() in its first argument). The call to AddSeasonal adds a seasonal
state component with 52 seasons to the state specification created on the previous line. The
state vector 𝛼𝑡 is formed by concatenating the state from each state model. Similarly, the
vector 𝑍𝑡 is formed by concatenating the 𝑍 vectors from the two state models, while the
matrices 𝑇𝑡 and 𝑅𝑡 are combined in block-diagonal fashion.
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The state specification is passed as an argument to bsts, along with the data and the desired
number of MCMC iterations. The model is fit using an MCMC algorithm, which in this
example takes about 20 seconds to produce 1000 MCMC iterations. The returned object is a
list (with class attribute bsts). You can see its contents by typing

[1] "sigma.obs" "sigma.trend.level"
[3] "sigma.trend.slope" "sigma.seasonal.52"
[5] "final.state" "state.contributions"
[7] "one.step.prediction.errors" "log.likelihood"
[9] "has.regression" "state.specification"

[11] "prior" "timestamp.info"
[13] "model.options" "family"
[15] "niter" "original.series"

The first few elements contain the MCMC draws of the model parameters. Most of the other
elements are data structures needed by various S3 methods (plot, print, predict, etc.)
that can be used with the returned object. MCMC output is stored in vectors (for scalar
parameters) or arrays (for vector or matrix parameters) where the first index in the array
corresponds to MCMC iteration number, and the remaining indices correspond to dimension
of the deviate being drawn.

Most users won’t need to look inside the returned bsts object because standard tasks like
plotting and prediction are available through familiar S3 methods. For example, there are
several plot methods available.

The Figure 5a above shows the Posterior distribution of model state. Blue circles are actual
data points. The Figure 5b shows the individual state components. The plot looks fuzzy
because it is showing the marginal posterior distribution at each time point.

The default plot method plots the posterior distribution of the conditional mean 𝑍𝑇
𝑡 𝛼𝑡 given

the full data 𝑦 = 𝑦1, … , 𝑦𝑇 . Other plot methods can be accessed by passing a string to the plot
function. For example, to see the contributions of the individual state components, pass the
string “components” as a second argument, as shown above. Figure below shows the output
of these two plotting functions. You can get a list of all available plots by passing the string
help as the second argument.

To predict future values there is a predict method. For example, to predict the next 12 time
points you would use the following commands.

9



Time

di
st

rib
ut

io
n

2004 2006 2008 2010 2012

−
1

1
2

3
4

5

(a) Prediction

Time

di
st

rib
ut

io
n

2004 2006 2008 2010 2012

−
1

1
2

3

trend

Time

di
st

rib
ut

io
n

2004 2006 2008 2010 2012

−
1

1
2

3

seasonal.52.1

(b) Components

Figure 5: Structural time series model for unemployment claims
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The output of predict is an object of class bsts.prediction, which has its own plot method.
The plot.original = 156 argument says to plot the prediction along with the last 156 time
points (3 years) of the original series.

3.2 Regression with spike and slab priors

Now let’s add a regression component to the model described above, so that we can use
Google search data to improve the forecast. The bsts package only includes 10 search terms
with the initial claims data set, to keep the package size small, but S. Scott and Varian (2014)
considered examples with several hundred predictor variables. When faced with large numbers
of potential predictors it is important to have a prior distribution that induces sparsity. A
spike and slab prior is a natural way to express a prior belief that most of the regression
coefficients are exactly zero.

A spike and slab prior is a prior on a set of regression coefficients that assigns each coefficient a
positive probability of being zero. Upon observing data, Bayes’ theorem updates the inclusion
probability of each coefficient. When sampling from the posterior distribution of a regression
model under a spike and slab prior, many of the simulated regression coefficients will be exactly
zero. This is unlike the “lasso” prior (the Laplace, or double-exponential distribution), which
yields MAP estimates at zero but where posterior simulations will be all nonzero. You can
read about the mathematical details of spike and slab priors in S. Scott and Varian (2014).

When fitting bsts models that contain a regression component, extra arguments captured by
... are passed to the SpikeSlabPrior function from the BoomSpikeSlab package. This allows
the analyst to adjust the default prior settings for the regression component from the bsts
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function call. To include a regression component in a bsts model, simply pass a model formula
as the first argument.

To examine the output you can use the same plotting functions as before. For example, to see
the contribution of each state component you can type
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It produces the contribution of each state component to the initial claims data, assuming a
regression component with default prior. Compare to the previous model. The regression
component is explaining a substantial amount of variation in the initial claims series.

There are also plotting functions that you can use to visualize the regression coefficients. The
following commands plot posterior inclusion probabilities for predictors in the “initial claims”
nowcasting example assuming an expected model size of 1 and 5.

(Intercept)
unemployment.filing

department.of.unemployment
illinois.unemployment

michigan.unemployment
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(b) Sparse

Figure 6: Variable Importance
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The search term “unemployment office” shows up with high probability in both models. In-
creasing the expected model size from 1 (the default) to 5 allows other variables into the model,
though “Idaho unemployment” is the only one that shows up with high probability.

Those probabilities are calculated from the histogram of the samples of each 𝛽 calculated by
the estimation algorithm (MCMC)
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Figure 7: Sample from the distribution over two beta parameters

3.3 Model diagnostics: Did the Google data help?

As part of the model fitting process, the algorithm generates the one-step-ahead prediction
errors 𝑦𝑡 − 𝐸(𝑦𝑡|𝑌𝑡−1, 𝜃), where 𝑌𝑡−1 = 𝑦1, … , 𝑦𝑡−1, and the vector of model parameters 𝜃 is
fixed at its current value in the MCMC algorithm. The one-step-ahead prediction errors can
be obtained from the bsts model by calling bsts.prediction.errors(model1).

The one step prediction errors are a useful diagnostic for comparing several bsts models that
have been fit to the same data. They are used to implement the function CompareBstsModels,
which is called as shown below.
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Figure 8: Comparison of Errors for the three models.

The bottom panel shows the original series. The top panel shows the cumulative total of the
mean absolute one step prediction errors for each model. The final time point in the top plot
is proportional to the mean absolute prediction error for each model, but plotting the errors as
a cumulative total lets you see particular spots where each model encountered trouble, rather
than just giving a single number describing each model’s predictive accuracy. This figure shows
that the Google data help explain the large spike near 2009, where model 1 accumulates errors
at an accelerated rate, but models 2 and 3 continue accumulating errors at about the same
rate they had been before. The fact that the lines for models 2 and 3 overlap in this figure
means that the additional predictors allowed by the relaxed prior used to fit model 3 do not
yield additional predictive accuracy.

3.4 Example 2: Long term forecasting

A common question about bsts is “which trend model should I use?” To answer that question
it helps to know a bit about the different models that the bsts software package provides, and
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what each model implies. In the local level model the state evolves according to a random
walk:

𝜇𝑡+1 = 𝜇𝑡 + 𝜂𝑡.
If you place your eye at time 0 and ask what happens at time 𝑡 , you find that 𝜇𝑡 ∼ 𝑁(𝜇0, 𝑡𝜎2𝜂).
The variance continues to grow with 𝑡, all the way to 𝑡 = ∞. The local linear trend is even
more volatile. When forecasting far into the future the flexibility provided by these models
becomes a double edged sword, as local flexibility in the near term translates into extreme
variance in the long term.

An alternative is to replace the random walk with a stationary AR process. For example

𝜇𝑡+1 = 𝜌𝜇𝑡 + 𝜂𝑡,

with 𝜂𝑡 ∼ 𝑁(0, 𝜎2𝜂) and |𝜌| < 1. This model has stationary distribution

𝜇∞ ∼ 𝑁 (0, 𝜎2
𝜂

1 − 𝜌2 ) ,

which means that uncertainty grows to a finite asymptote, rather than infinity, in the distant
future. bsts offers autoregressive state models through the functions AddAr, when you want
to specify a certain number of lags, and AddAutoAr when you want the software to choose the
important lags for you.

A hybrid model modifies the local linear trend model by replacing the random walk on the
slope with a stationary AR(1) process, while keeping the random walk for the level of the
process. The bsts package refers to this is the “semilocal linear trend” model.

𝜇𝑡+1 =𝜇𝑡 + 𝛿𝑡 + 𝜂0𝑡
𝛿𝑡+1 =𝐷 + 𝜌(𝛿𝑡 − 𝐷) + 𝜂1𝑡

The 𝐷 parameter is the long run slope of the trend component, to which 𝛿𝑡 will eventually
revert. However 𝛿𝑡 can have short term autoregressive deviations from the long term trend,
with memory determined by 𝜌. Values of 𝜌 close to 1 will lead to long deviations from 𝐷. To
see the impact this can have on long term forecasts, consider the time series of daily closing
values for the S&P 500 stock market index over the last 5 years, shown below.
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Figure 9: Daily closing values for the S&P 500 stock market index

Consider two forecasts of the daily values of this series for the next 360 days. The first assumes
the local linear trend model. The second assumes the semilocal linear trend.

Figure below shows long term forecasts of the S&P 500 closing values under the (left) local
linear trend and (right) semilocal linear trend state models.
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Figure 10: S&P 500 Prediction

Not only the forecast expectations from the two models are different, but the forecast errors
from the local linear trend model are implausibly wide, including a small but nonzero probabil-
ity that the S&P 500 index could close near zero in the next 360 days. The error bars from the
semilocal linear trend model are far more plausible, and more closely match the uncertainty
observed over the life of the series thus far.

3.5 Example 3: Recession modeling using non-Gaussian data

Although we have largely skipped details about how the bsts software fits models, the Gaus-
sian error assumptions in the observation and transition equations are important for the model
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fitting process. Part of that process involves running data through the Kalman filter, which
assumes Gaussian errors in both the state and transition equations. In many settings where
Gaussian errors are obviously inappropriate, such as for binary or small count data, one can
introduce latent variables that give the model a conditionally Gaussian representation. Well
known “data augmentation” methods exist for probit regression (Albert and Chib (1993)) and
models with student-T errors (Rubin (2015)). Somewhat more complex methods exist for logis-
tic regression (Frühwirth-Schnatter and Frühwirth (2007), Held and Holmes (2006), Gramacy
and Polson (2012)) and Poisson regression (Frühwirth-Schnatter et al. (2008)). Additional
methods exist for quantile regression (Benoit and Van den Poel (2012)), support vector ma-
chines (Polson and Scott (2011)), and multinomial logit regression (Frühwirth-Schnatter and
Frühwirth (2010)). These are not currently provided by the bsts package, but they might be
added in the future.

To see how non-Gaussian errors can be useful, consider the analysis done by Berge, Sinha, and
Smolyansky (2016) who used Bayesian model averaging (BMA) to investigate which of several
economic indicators would best predict the presence or absence of a recession. We will focus
on their nowcasting example, which models the probability of a recession at the same time
point as the predictor variables. Berge, Sinha, and Smolyansky (2016) also analyzed the data
with the predictors at several lags.

The model used in Berge, Sinha, and Smolyansky (2016) was a probit regression, with Bayesian
model averaging used to determine which predictors should be included. The response variable
was the the presence or absence of a recession (as determined by NBER).
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Figure 11: Recession periods identified by NBER

The BMA done by Berge, Sinha, and Smolyansky (2016) is essentially the same as fitting a
logistic regression under a spike-and-slab prior with the prior inclusion probability of each
predictor set to 1/2 . That analysis can be run using the BoomSpikeSlab R package (S. L.
Scott (2022)), which is similar to bsts, but with only a regression component and no time
series.
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The logistic regression model is highly predictive, but it ignores serial dependence in the data.
To capture serial dependence, consider the following dynamic logistic regression model with a
local level trend model.

logit(𝑝𝑡) =𝜇𝑡 + 𝛽𝑇 𝑥𝑡
𝜇𝑡+1 =𝜇𝑡 + 𝜂𝑡

Here 𝑝𝑡 is the probability of a recession at time 𝑡 ,and 𝑥𝑡 is the set of economic indicators used
by Berge, Sinha, and Smolyansky (2016) in their analysis. The variables are listed in the table
below

Variable Definition/notes Transformation
Financial Variables
Slope of yield curve 10-year Treasury less 3-month yield
Curvature of yield curve 2 x 2-year minus 3-month and

10-year
GZ index Gilchrist and Zakrajsek (AER, 2012)
TED spread 3-month ED less 3-month Treasury

yield
BBB corporate spread BBB less 10-year Treasury yield
S 500, 1-month return 1-month log diff.
S 500, 3-month return 3-month log diff.
Trade-weighted dollar 3-month log diff.
VIX CBOE and extended following Bloom
Macroeconomic Indicators
Real personal consumption
expend.

3-month log diff.

Real disposable personal income 3-month log diff.
Industrial production 3-month log diff.
Housing permits 3-month log diff.
Nonfarm payroll employment 3-month log diff.
Initial claims 4-week moving average 3-month log diff.
Weekly hours, manufacturing 3-month log diff.
Purchasing managers index 3-month log dif

First, we prepare the data by shifting it by ℎ, which is the forecast horison.

To fit this model, we can issue the commands shown below.

Not let’s plot the results
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Notice, the distribution of 𝑝𝑡, it is moving to very large values during a recession, and to
very small values outside of a recession. This effect captures the strong serial dependence in
the recession data. Recessions are rare, but once they occur they tend to persist. Assuming
independent time points is therefore unrealistic, and it substantially overstates the amount of
information available to identify logistic regression coefficients.
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3.6 Final Remarks on Structural Models

The preceding examples have shown that the bsts software package can handle several nonstan-
dard, but useful, time series applications. These include the ability to handle large numbers of
contemporaneous predictors with spike and slab priors, the presence of trend models suitable
for long term forecasting, and the ability to handle non-Gaussian data. We have run out of
space, but bsts can do much more.

For starters there are other state models you can use. Bsts has elementary support for holidays.
It knows about 18 US holidays, and has capacity to add more, including holidays that occur
on the same date each year, holidays that occur on a fixed weekday of a fixed month (e.g. 3rd
Tuesday in February, or last Monday in November). The model for each holiday is a simple
random walk, but look for future versions to have improved holiday support via Bayesian
shrinkage.

Bsts offers support for multiple seasonalities. For example, if you have several weeks of hourly
data then you will have an hour-of-day effect as well as a day-of-week effect. You can model
these using a single seasonal effect with 168 seasons (which would allow for different hourly
effects on weekends and weekdays), or you can assume additive seasonal patterns using the
season.duration argument to AddSeasonal,

ss <- AddSeasonal(ss, y, nseasons = 24)
ss <- AddSeasonal(ss, y, nseasons = 7, season.duration = 24)

The latter specifies that each daily effect should remain constant for 24 hours. For modeling
physical phenomena, bsts also offers trigonometric seasonal effects, which are sine and cosine
waves with time varying coefficients. You obtain these by calling AddTrig. Time varying effects
are available for arbitrary regressions with small numbers of predictor variables through a call
to AddDynamicRegression.

In addition to the trend models discussed so far, the function AddStudentLocalLinearTrend
gives a version of the local linear trend model that assumes student-t errors instead of Gaussian
errors. This is a useful state model for short term predictions when the mean of the time series
exhibits occasional dramatic jumps. Student-t errors can be introduced into the observation
equation by passing the family = "student" argument to the bsts function call. Allowing
for heavy tailed errors in the observation equation makes the model robust against individual
outliers, while heavy tails in the state model provides robustness against sudden persistent
shifts in level or slope. This can lead to tighter prediction limits than Gaussian models when
modeling data that have been polluted by outliers. The observation equation can also be set
to a Poisson model for small count data if desired.
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Finally, the most recent update to bsts supports data with multiple observations at each time
stamp. The Gaussian version of the model is

𝑦𝑖𝑡 =𝛽𝑇 𝑥𝑖𝑡 + 𝑍𝑇
𝑡 𝛼𝑡 + 𝜖𝑖𝑡

𝛼𝑡+1 =𝑇𝑡𝛼𝑡 + 𝑅𝑡𝜂𝑡,

which is best understood as a regression model with a time varying intercept.

4 Modern Era Forecasting

A recent post by the Amazon Science group Amazon (2021) describes the evolution of the
time series algorithms used for forecasting from 2007 to 2021. Figure below shows the entire
evolution of the algorithms.

They went from standard textbook time series forecasting methods to make predictions to the
quantile-based transformer models. The main problem of the traditional TS models is that
they assume stationary. A stationary time series is one whose properties do not depend on
the time at which the series is observed. For exmaple, a white noise series is stationary — it
does not matter when you observe it, it should look much the same at any point in time.
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In other words, all the coefficients of a time series model do not change over time. We know
how to deal with trends and seasonality quite well. Thus, those types of non-stationary are
not an issue. Below some of the example of time series data. Although most of those are not
stationary, we can model them using traditional techniques (Hyndman and Athanasopoulos
(2021)).

3600

3700

3800

3900

4000

0 50 100 150 200 250 300
Day

dj

(a)

−100

−50

0

50

0 50 100 150 200 250 300
Day

di
ff(

dj
)

(b)

4000

5000

6000

1950 1955 1960 1965 1970 1975 1980
Year

st
rik

es

(c)

40

60

80

1975 1980 1985 1990 1995
Year

fm
a:

:h
sa

le
s

(d)

100

200

300

1900 1920 1940 1960 1980
Year

eg
gs

(e)

50000

75000

100000

1980 1985 1990 1995
Year

pi
gs

(f)

0

2000

4000

6000

1820 1840 1860 1880 1900 1920
Year

ly
nx

(g)

120

140

160

180

1991 1992 1993 1994 1995
Year

be
er

(h)

4000

8000

12000

16000

1960 1970 1980 1990
Year

el
ec

(i)

Figure 12: Which of these series are stationary? (a) Dow Jones index on 292 consecutive
days; (b) Daily change in the Dow Jones index on 292 consecutive days; (c) Annual
number of strikes in the US; (d) Monthly sales of new one-family houses sold in
the US; (e) Annual price of a dozen eggs in the US (constant dollars); (f) Monthly
total of pigs slaughtered in Victoria, Australia; (g) Annual total of lynx trapped
in the McKenzie River district of north-west Canada; (h) Monthly Australian beer
production; (i) Monthly Australian electricity production.
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However, when you try to forecast for a time series with no prior history or non-recurrent
“jumps”, like recessions, traditional models are unlikely to work well.

Amazon used a sequence of “patches” to hack the model and to make it produce useful results.
All of those reacquired manual feature engineering and led to less transparent and fragile
models. One solution is to use random forests.

4.1 Quantile Regression Forests.

Most estimators during prediction return 𝐸(𝑌 |𝑋), which can be interpreted as the answer to
the question, what is the expected value of your output given the input?

Quantile methods, return 𝑦 at 𝑞 for which 𝐹(𝑌 = 𝑦|𝑋) = 𝑞 where 𝑞 is the percentile and 𝑦 is
the quantile. One quick use-case where this is useful is when there are a number of outliers
which can influence the conditional mean. It is sometimes important to obtain estimates at
different percentiles, (when grading on a curve is done for instance.)

Note, Bayesian models return the entire distribution of 𝑃(𝑌 |𝑋).
It is fairly straightforward to extend a standard decision tree to provide predictions at per-
centiles. When a decision tree is fit, the trick is to store not only the sufficient statistics of the
target at the leaf node such as the mean and variance but also all the target values in the leaf
node. At prediction, these are used to compute empirical quantile estimates.

The same approach can be extended to Random Forests. To estimate 𝐹(𝑌 = 𝑦|𝑥) = 𝑞 each
target value in training 𝑦s is given a weight. Formally, the weight given to 𝑦𝑗 while estimating
the quantile is

1
𝑇

𝑇
∑
𝑡=1

𝟙(𝑦𝑗 ∈ 𝐿(𝑥))
∑𝑁

𝑖=1 𝟙(𝑦𝑖 ∈ 𝐿(𝑥))
,

where 𝐿(𝑥) denotes the leaf that 𝑥 falls into.

Informally, what it means that for a new unknown sample, we first find the leaf that it falls
into at each tree. Then for each (𝑋, 𝑦) in the training data, a weight is given to 𝑦 at each tree
in the following manner.

1. If it is in the same leaf as the new sample, then the weight is the fraction of samples in
the same leaf.

2. If not, then the weight is zero.

These weights for each y are summed up across all trees and averaged. Now since we have an
array of target values and an array of weights corresponding to these target values, we can use
this to measure empirical quantile estimates.nding to these target values, we can use this to
measure empirical quantile estimates.
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Motivated by the success of gradient boositg model for predicting Walmart sales (kaggle
(2020)), Januschowski et al. (2022) tries to explain why tree-based methods were so widely
used for forecasting.

Figure 13: Januschowski et al. (2022)

4.2 Attention Mechanisms

Chen et al. (2022) was one of the first papers on the topic. The idea is simple, treat sentences
are a sequence of words as well as observed 𝑥𝑡 and 𝑦𝑡 in forecsting problems.
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Figure 14: Chen et al. (2022)
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