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Abstract

We provide a statistical analysis of the recent controversy between Vladimir Kramnik (ex-world
champion) and Hikaru Nakamura. Kramnik called into question Nakamura’s 45.5 out of 46 win
streak in a 3+0 online blitz contest at chess.com. We assess the weight of evidence using an
a priori probabilistic assessment of Viswanathan Anand and the streak evidence of Kramnik.
Our analysis shows that Nakamura has 99.6 percent chance of not cheating given Anand’s prior
assumptions. We also study the statistical fallacies prevalent in their analysis. Kramnik on the
one hand, bases his argument on the fact that the probability of such a streak is very small. This
falls into precisely the Prosecutor’s Fallacy. Nakamura on the other hand, attempts to refute the
argument, using a cherry-picking argument. This violates the likelihood principle. We conclude
with the discussion of the relevant statistical literature on the topic of fraud detection and the
analysis of streaks in sports data.
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1 Introduction

We provide a discussion of the statistical fallacies in probabilistic thinking of both Kramnik and
Nakamura. Kramnik makes the blunder of the Prosecutor’s Fallacy, well-known in expert testimony
of confusing the p-value with the Bayes posterior probability. Whereas Nakamura attempts to refute
Kramnik’s argument using a cherry-picking argument. This violates the likelihood principle. We also
provide a list of relevant research on the topic of streaks in sports.

We start by addressing the argument of Kramnik which is based on the fact that the probability
of such a streak is very small. This falls into precisely the Prosecutor’s Fallacy. The Prosecutor’s
Fallacy is a statistical reasoning error that occurs when the probability of one event is confused with
the probability of another related event. It’s often associated with the misinterpretation of evidence
and conditional probabilities. It assumes that the probability of innocence given the evidence is the
same as the probability of the evidence given the innocence. This can lead to wrongly convicting
innocent defendants.

∗Nick Polson is Professor of Econometrics and Statistics at Chicago Booth: ngp@chicagobooth.edu
†Vadim Sokolov is an Associate Professor at Operations Reaearch at George Mason University: vsokolov@gmu.edu
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Figure 1: Anand’s prior. Source: Hindustan Times.

Let introduce the notations. We denote by G the event of being guilty and I the event of innocence.
We use E to denote evidence. In our case the evidence is the streak of wins by Nakamura. The
Kramnik’s argument is that probability of observing the streak is very low, thus we might have a case
of cheating. This is the prosecutor’s fallacy

P (I | E) ̸= P (E | I).

Kramnik’s calculations neglects other relevant factors, such as the prior probability of the cheating.
The prosecutor’s fallacy can lead to an overestimation of the strength of the evidence and may result
in an unjust conviction. In the cheating problem, at the top level of chess prior probability of P (G) is
small! According to a recent statement by Viswanathan Anand, the probability of cheating is 1/10000.

Section 2 provides calculations that use the prior odds of cheating and apply the Bayes rule to
calculate the odds of cheating given the observed 45 win streak. We provide a sensitivity analysis to
the inputs inherent in the analysis of the Nakamura-Kramnik controversy. Nakamura is one of the
world’s best 3+0 online blitz players, second only to Magnus Carlsen, the current world champion.
We show that this winning streak, given he played against lower rated players, does not provide strong
evidence of cheating. We also provide a list of relevant research on the topic of streaks in sports.

Furthermore, we discuss the likelihood principle. The likelihood principle is addressed in the
seminal paper on testing by Edwards et al. [1963].

1.1 Existing Literature

The dichotomy between the traditional p-value based hypothesis testing and Bayesian hypothesis
testing has been widely discussed in the literature. The Bayesian analysis uses Bayes factors that
can then be calculated once the researcher is willing to assess a prior predictive interval for the test
statistic. In most experimental situations, this appears to be the most realistic way of assessing apriori
information. For related discussion, see Berger [2003] and Lopes and Polson [2019].

A related concept to hypothesis testing is a concept of black swan, an unexpected or extreme
outcome [Taleb, 2007]. As Lindley [2008] discusses in his review, the Bayesian framework provides a
proper framework for calculating probabilities of those rare events.

Balding and Donnelly [1995] discusses the Bayes in forensic science. He provides a detailed discus-
sion of the Bayes factor and the likelihood ratio. He also discusses the problem of the prior probability
of guilt. Berry and Chastain [2004] discuss the use of Bayes factors (ratio of evidence under innocent
and guilty hypotheses). They discuss the case of Mary Decker Slaney. Good [1996] in the O.J. Simp-
son case uses Bayes Factors, and Lindley [2008] shows how to assess probabilities in the Black Swan
Case.
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2 Bayesian Island Problem

Given there prior ratio of cheaters to not cheaters is 1/N , meaning out of N + 1 players, there is one
cheater. The Bayes calculations requires two main terms. The first one is the prior odds of guilt:

O(G) = P (I)/P (G).

Here P (I) and P (G) are the prior probabilities of innocence and guilt respectively.
The second term is the Bayes factor, which is the ratio of the probability of the evidence under

the guilt hypothesis to the probability of the evidence under the innocence hypothesis. The Bayes
factor is given by

L(E | G) =
P (E | I)
P (E | G)

.

Product of the Bayes factor and the prior odds is the posterior odds of guilt, given the evidence.
The posterior odds of guilt is given by

O(G | E) = O(G)× L(E | G).

The odds of guilty is

O(G) =
N/(N + 1)

1/(N + 1)
= N.

The Bayes factor is given by
P (E | I)
P (E | G)

=
p

1
= p.

Thus, the posterior odds of guilt are
O(G | E) = Np.

There are two numbers we need to estimate to calculate the odds of cheating given the evidence,
namely the prior probability of cheating given via N and the probability of a streak p = P (E | I).

There are multiple ways to calculate the probability of a streak. We can use the binomial distri-
bution, the negative binomial distribution, or the Poisson distribution. The binomial distribution is
the most natural choice. The probability of a streak of k wins in a row is given by

P (E | I) =
(
N

k

)
qk(1− q)N−k.

Here q is is the probability of winning a single game. Thus for a streak of 45 wins in a row, we have
k = 45 and N = 46. We encode the outcome of a game as 1 for a win and 0 for a loss or a draw. The
probability of a win is q = 0.8916 (Nakamura’s Estimate, he reported on his YouTube channel). The
probability of a streak is then 0.029. The individual game win probability is calculated from the ELO
rating difference between the players.

Then we use the Anand’s prior ofN = 10000 to get the posterior odds of cheating given the evidence
of a streak of 45 wins in a row. The posterior odds of being innocent are 285. The probability of
cheating is then

P (G | E) = 1/(1 +O(G | E)) = 0.003491.

Therefore the probability of innocent

P (I | E) =
Np

Np+ 1
= 0.9965.

For completeness, we perform sensitivity analysis and also get the odds of not cheating forN = 500,
which should be high prior probability given the status of the player and the importance of the event.
We get

P (I | E) =
Np

Np+ 1
= 0.9445.

There are several assumptions we made in this analysis.

3



• Instead of calculating game-by-game probability of winning, we used the average probability of
winning of 0.8916, provided by Nakamura himself. This is a reasonable assumption given the fact
that Nakamura is a much stronger player than his opponents. This assumption slightly shifts
posterior odds in favor of not cheating. Due to Jensen inequality, we have E(q50) > E(q)50.
Expected value of the probability of winning a single game is E(q) = 0.8916 and the expected
value of the probability of a streak of 50 wins is E(q50). We consider the difference between
the two to be small. Further, there is some correlation between the games, which also shifts the
posterior odds in favor of not cheating. For example, some players are on tilt. Given they lost
first game, they are more likely to lose the second game.

• There are many ways to win 3+0 unlike in classical chess. For example, one can win on time. We
argue that probability of winning calculated from the ELO rating difference is underestimated.

Next, we can use the Bayes analysis to solve an inverse problem and to find what prior you need
to assume and how long of a sequence you need to observe to get 0.99 posterior? Small sample size,
we have p close to 1. Figure 2 shows the combination of prior (N) and the probability of a streak (p)
that gives posterior odds of 0.99.

0.05 0.10 0.15 0.20

20
00

60
00

10
00

0

p

N

Figure 2: Combination of prior (N) and the probability of a streak (p) that gives posterior odds of
0.99.

Indeed, the results of the Bayesian analysis contradict the results of a traditional p-value based
approach. A p-value is a measure used in frequentist statistical hypothesis testing. It represents
the probability of obtaining the observed results, or results more extreme, assuming that the null
hypothesis is true. The null hypothesis is a default position that Nakamura is not cheating and we
compare the ELO-based expected win probability of q = 0.8916 to the observed on of s = 45/46 =
0.978. Under the null hypothesis, Nakamura should perform at the level predicted by q.

It is assumed that the ratio (s−q)2/q follows a Chi-squared distribution with one degree of freedom.
The p-value is then calculated as the probability of s being smaller than or equal to q. A smaller
p-value indicates a stronger likelihood that you should reject the null hypothesis. In other words, a
small p-value suggests that the observed data is unlikely under the null hypothesis, providing evidence
against it. In our case, the p-value is 0.009. Thus, under a traditional frequentist approach, we would
reject the null hypothesis that Nakamura is not cheating.

However, it’s important to note that a p-value does not measure the probability that the studied
hypothesis is true, or the probability that the data were produced by random chance alone. It also
does not measure the size of an effect or the importance of a result.

The screenshot below shows the table that Kramnik presented at in interview on Levitov Chess
World YouTube channel he gave on November 27, 2023 [Levitov Chess World, 2023].
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Figure 3: Table Published by Kramnik

Although, it is not clear how the Performance columns was constructed, the analysis of Kramnik is
more aligned with the p-value based approach or calculating P (E | I) (prosecutor’s fallacy). However,
even those two approaches have non-zero probability assigned to observing a streak of 55 consecutive
wins. This case P (E | I) = 0.001023 and the p-value is 0.0062. However, the posterior probability of
cheating is still relatively low and is equal to 0.089. He probably can beat his opponents 55 out of 55,
but he cannot beat the laws of probability. It is not infinity.

Nakamura himself, on the other hand claims that cherry-picking a sequence of 46 games out of more
than 3500 he played on chess.com is not a fair approach to collect the data. We argue, Nakamura’s
statement is a violation of the likelihood principle.

The likelihood principle is addressed in the seminal paper on testing by Edwards et al. [1963].
The likelihood principle states that the evidence from an experiment is contained in the likelihood
function. As Edwards-Lindman-Savage say it: “Often evidence which, for a Bayesian statistician,
strikingly supports the null hypothesis leads to rejection of that hypothesis by standard classical
procedures. The likelihood principle emphasized in Bayesian statistics implies, among other things,
that the rules governing when data collection stops are irrelevant to data interpretation. It is entirely
appropriate to collect data until a point has been proven or disproven, or until the data collector runs
out of time, money, or patience.”

3 Discussion

Probability of a streak is widely discussed, but it has nothing to do with the probability of cheating.
Kramnik is correct in ignoring the analysis of streaks in Nakamuras games —- although this is an
interesting problem in and on itself. In section 1.1, we provide a relevant list of research and clearly
it’s an interesting study. Hot hands and streaks have been the topic of much research in many sports.

Finegold is a victim of another fallacy, called the Cromwell’s rule. Cromwell’s rule, states that
predictions should be wary of assigning a prior probability of 0 (impossible) or 1 (certain) to anything
except to statements that must be logically true.
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Figure 4: Screenshot of Ben Finegold’s Twitt from November 20, 2023.

Essentially, P (G) = 0 implies P (G | E) = 0 for any evidence E.
In conclusion, the Bayesian analysis of the Nakamura-Kramnik controversy shows that Nakamura

has 99.9 percent chance of not cheating given Anand’s prior assumptions. We also study the statistical
fallacies prevalent in their analysis. Kramnik on the one hand, bases his argument on the fact that the
probability of such a streak is very small. This falls into precisely the Prosecutor’s Fallacy. Nakamura
on the other hand, attempts to refute the argument, using a cherry-picking argument. This violates
the likelihood principle.

Finally, in the light of new evidence we allow the possibility of updating our believes. As Kaynes
said, ”Sir, if the facts change, I change my opinion”.
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